Computation Throughput Maximization for UAV-Enabled MEC with Binary Computation Offloading

Mobile edge computing (MEC) has been considered to provide computation services near the edge of mobile networks, while the unmanned aerial vehicle (UAV) is becoming an important integrated component to extend service coverage. In this paper, we consider a UAV-enabled MEC with binary computation off...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE International Conference on Communications (2003) S. 4348 - 4353
Hauptverfasser: Xu, Changyuan, Zhan, Cheng, Liao, Jingrui, Gong, Jue
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 16.05.2022
Schlagworte:
ISSN:1938-1883
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Mobile edge computing (MEC) has been considered to provide computation services near the edge of mobile networks, while the unmanned aerial vehicle (UAV) is becoming an important integrated component to extend service coverage. In this paper, we consider a UAV-enabled MEC with binary computation offloading, where a UAV serves as an aerial edge server and each task of devices is either executing locally or offloading to the aerial edge server as a whole. To provide fairness among different ground devices, we aim to maximize the minimum computation throughput for all devices via the joint design of computing mode selection and UAV trajectory as well as resource allocation. The optimization problem is formulated as a mixed-integer nonlinear problem consisting of binary variables, which is difficult to tackle. The influence of non-binary solutions is penalized with a penalty function, based on which we develop an efficient iteration algorithm to obtain a suboptimal solution via leveraging the penalty successive convex approximation (P-SCA) method and difference of two convex (D.C.) optimization framework, where the algorithm is guaranteed to converge. Extensive simulations are conducted and the results with different system parameters show the effectiveness of the proposed joint design algorithm compared with other benchmark schemes.
AbstractList Mobile edge computing (MEC) has been considered to provide computation services near the edge of mobile networks, while the unmanned aerial vehicle (UAV) is becoming an important integrated component to extend service coverage. In this paper, we consider a UAV-enabled MEC with binary computation offloading, where a UAV serves as an aerial edge server and each task of devices is either executing locally or offloading to the aerial edge server as a whole. To provide fairness among different ground devices, we aim to maximize the minimum computation throughput for all devices via the joint design of computing mode selection and UAV trajectory as well as resource allocation. The optimization problem is formulated as a mixed-integer nonlinear problem consisting of binary variables, which is difficult to tackle. The influence of non-binary solutions is penalized with a penalty function, based on which we develop an efficient iteration algorithm to obtain a suboptimal solution via leveraging the penalty successive convex approximation (P-SCA) method and difference of two convex (D.C.) optimization framework, where the algorithm is guaranteed to converge. Extensive simulations are conducted and the results with different system parameters show the effectiveness of the proposed joint design algorithm compared with other benchmark schemes.
Author Zhan, Cheng
Liao, Jingrui
Gong, Jue
Xu, Changyuan
Author_xml – sequence: 1
  givenname: Changyuan
  surname: Xu
  fullname: Xu, Changyuan
  email: xcy202009@email.swu.edu.cn
  organization: Southwest University,School of Computer and Information Science,China
– sequence: 2
  givenname: Cheng
  surname: Zhan
  fullname: Zhan, Cheng
  email: zhanc@swu.edu.cn
  organization: Southwest University,School of Computer and Information Science,China
– sequence: 3
  givenname: Jingrui
  surname: Liao
  fullname: Liao, Jingrui
  email: liaojingrui@email.swu.edu.cn
  organization: Southwest University,School of Computer and Information Science,China
– sequence: 4
  givenname: Jue
  surname: Gong
  fullname: Gong, Jue
  email: gj1340172827@email.swu.edu.cn
  organization: Southwest University,School of Computer and Information Science,China
BookMark eNpNkMtOwzAURA0CiabwBQjJP5Dg6xsn9rJEKVRq1U3Lgk1lJ3ZjlEeVpOLx9VRqF6xGZxZHownITdu1lpAnYBEAU8-LLIuFFCLijPNISZQyVVckAIEykRin8TWZgEIZgpR4R4Jh-GRMcIUwIR9Z1xyOox5919JN1XfHfXViutLfvvG_5951Pd3O3sO81aa2JV3lGf3yY0VffKv7H_rfsXau7nTp2_09uXW6HuzDJadkO8832Vu4XL8ustky9IA4hkIojXGiDILkDpw2jnPDudBJ6UpjGDNpgUlitAEGCLaIlRO85LJAgQpxSh7PXm-t3R1635w27S4_4B9oblTh
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICC45855.2022.9838879
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1538683474
9781538683477
EISSN 1938-1883
EndPage 4353
ExternalDocumentID 9838879
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
GroupedDBID 29F
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i133t-559a3469b3182f1fabf22b225a6dfdbb00b7c366bab10131ec49f52d28c353933
IEDL.DBID RIE
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000864709904088&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:23:07 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i133t-559a3469b3182f1fabf22b225a6dfdbb00b7c366bab10131ec49f52d28c353933
PageCount 6
ParticipantIDs ieee_primary_9838879
PublicationCentury 2000
PublicationDate 2022-May-16
PublicationDateYYYYMMDD 2022-05-16
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-May-16
  day: 16
PublicationDecade 2020
PublicationTitle IEEE International Conference on Communications (2003)
PublicationTitleAbbrev ICC
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0052931
Score 2.288304
Snippet Mobile edge computing (MEC) has been considered to provide computation services near the edge of mobile networks, while the unmanned aerial vehicle (UAV) is...
SourceID ieee
SourceType Publisher
StartPage 4348
SubjectTerms Approximation algorithms
Autonomous aerial vehicles
Benchmark testing
binary computation offloading
Computational modeling
mobile-edge computing (MEC)
penalty successive convex approximation (P-SCA)
Simulation
Throughput
Trajectory
unmanned aerial vehicle (UAV)
Title Computation Throughput Maximization for UAV-Enabled MEC with Binary Computation Offloading
URI https://ieeexplore.ieee.org/document/9838879
WOSCitedRecordID wos000864709904088&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED21FQMsfLSIb3lgxG1jO04yQtQKhpYOLapYqji2pUrQoNIifj5nJ5QisbAlkZJId3q-O_vePYBrbSzHNY9RoWNOhWGWZsIY30yF6ansxqrrxSai4TCeTpNRDW42XBhjjG8-M2136c_ydZGv3VZZJ4k5YiKpQz2KZMnV-l51QwxbQcXQCbpJ5yFNBWbCIVaAjLWrF38pqPgA0t__368PoPXDxCOjTYw5hJpZHMHe1hDBJjyXwgzewmRcyu7gPRlkn_PXimVJMDUlk9sn2vNUKU0GvZS4LVhy5_m4ZPsbj9a-FL61vgWTfm-c3tNKMYHOsdZcUSwPMo4Fr0KkMhvYTFnGFEI2k9pqhRBTUc6lVJkK3KAdk4vEhkyzOOchTzg_hsaiWJgTIOiqXIhIYsA3wloWBw7uSW6Zm3Bn7Ck0nZVmb-VQjFlloLO_H5_DrnOEO3YP5AU0Vsu1uYSd_GM1f19eeU9-AUW7n1Q
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEJ0gmqgXP9D4bQ8eLbBtd9kedQOBCMgBDPFCtt02IVEwCMaf77SsiIkXb7ub7G4yk9eZaefNA7jJjOW45jEqsphTYZilqTDGN1NhehpVY1X1YhO1bjceDmWvALcrLowxxjefmbK79Gf52VQv3FZZRcYcMSE3YNMpZ-Vsre91N8TAFeQcnaAqK60kEZgLh1gDMlbOX_2loeJDSGPvfz_fh6MfLh7praLMARTM5BB218YIluB5Kc3gbUz6S-EdvCed9HP8mvMsCSanZHD3ROueLJWRTj0hbhOW3HtGLln_xqO1L1PfXH8Eg0a9nzRprplAx1htzikWCCnHklchVpkNbKosYwpBm0aZzRSCTNU0jyKVqsCN2jFaSBuyjMWah1xyfgzFyXRiToCgs7QQtQhDvhHWsjhwgJfaMjfjzthTKDkrjd6WYzFGuYHO_n58DdvNfqc9are6D-ew45ziDuGD6AKK89nCXMKW_piP32dX3qtfwb6inQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+International+Conference+on+Communications+%282003%29&rft.atitle=Computation+Throughput+Maximization+for+UAV-Enabled+MEC+with+Binary+Computation+Offloading&rft.au=Xu%2C+Changyuan&rft.au=Zhan%2C+Cheng&rft.au=Liao%2C+Jingrui&rft.au=Gong%2C+Jue&rft.date=2022-05-16&rft.pub=IEEE&rft.eissn=1938-1883&rft.spage=4348&rft.epage=4353&rft_id=info:doi/10.1109%2FICC45855.2022.9838879&rft.externalDocID=9838879