Comparing human and algorithmic anomaly detection for HVAC systems applications

This paper reports the first results of a comparison of human and algorithmic anomaly detection. We are interested in how human and automated anomaly detection can be combined in the most beneficial way to improve how fault detection is practiced in building maintenance. Open source datasets with se...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2022 IEEE Eighth International Conference on Big Data Computing Service and Applications (BigDataService) s. 155 - 160
Hlavní autoři: Borrison, Reuben, Syndicus, Marc, Orth, Andre, Markovic, Romana, Dix, Marcel, Liguori, Antonio, Berning, Matthias, Wagner, Andreas, Van Treeck, Christoph
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.08.2022
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper reports the first results of a comparison of human and algorithmic anomaly detection. We are interested in how human and automated anomaly detection can be combined in the most beneficial way to improve how fault detection is practiced in building maintenance. Open source datasets with sensor data were annotated by persons with low subject matter experience, and compared with a Convolutional Autoencoder Neural Network (CAE) as well as a dedicated time series algorithm (DeepAnT), and detection metrics of human and algorithmic procedures are compared. Future comparisons will include higher levels of expertise on the human side, and more sophistication/training amount on the algorithm side. We close by discussing the advantages and caveats of our approach.
DOI:10.1109/BigDataService55688.2022.00032