Randomized Simplicial Approximate Stochastic Dynamic Programming for Mid-term Reservoir Optimization

Midterm reservoir management problems are often cast as stochastic dynamic programs, due to their sequential nature. Because of the well known dimensionality issue of dynamic programming, several approximate dynamic programming (ADP) techniques have been proposed to tackled these problems. In this w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Conference on Control, Decision and Information Technologies (Online) Jg. 1; S. 468 - 474
Hauptverfasser: Zephyr, Luckny, Lamond, Bernard F.
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 17.05.2022
Schlagworte:
ISSN:2576-3555
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Midterm reservoir management problems are often cast as stochastic dynamic programs, due to their sequential nature. Because of the well known dimensionality issue of dynamic programming, several approximate dynamic programming (ADP) techniques have been proposed to tackled these problems. In this work, we investigate a new ADP scheme based on a hydrid simplicial and Monte Carlo sampling strategy. Our starting point is the works [1]-[3], which proposed a simplicial decomposition scheme guided by the curvature of the value function, as estimated by local differences between lower and upper bounds. In contrast to these approaches, which store an exhaustive list of "active" simplices at each iteration, our proposals choose grid points in small random samples of simplices. Our proposal is tested on the approximation of randomly generated concave functions and mid-term reservoir management problems.
AbstractList Midterm reservoir management problems are often cast as stochastic dynamic programs, due to their sequential nature. Because of the well known dimensionality issue of dynamic programming, several approximate dynamic programming (ADP) techniques have been proposed to tackled these problems. In this work, we investigate a new ADP scheme based on a hydrid simplicial and Monte Carlo sampling strategy. Our starting point is the works [1]-[3], which proposed a simplicial decomposition scheme guided by the curvature of the value function, as estimated by local differences between lower and upper bounds. In contrast to these approaches, which store an exhaustive list of "active" simplices at each iteration, our proposals choose grid points in small random samples of simplices. Our proposal is tested on the approximation of randomly generated concave functions and mid-term reservoir management problems.
Author Lamond, Bernard F.
Zephyr, Luckny
Author_xml – sequence: 1
  givenname: Luckny
  surname: Zephyr
  fullname: Zephyr, Luckny
  email: lzephyr@laurentian.ca
  organization: Laurentian University,Faculty of Management,Sudbury,ON,Canada,P3E 2C6
– sequence: 2
  givenname: Bernard F.
  surname: Lamond
  fullname: Lamond, Bernard F.
  email: bernard.lamond@fsa.ulaval.ca
  organization: Université Laval,Department of Operations & Decision Systems,Québec,QC,Canada,G1V 0A6
BookMark eNotkN9KwzAchaMouM09gRfmBVp_SZo2uRybfwaTyTbBu5GmyYwsTUmDOJ_egrs539X5OJwxumpDaxC6J5ATAvJhHhbLHeeEk5wCpbkUUEAFF2hMypIXsoTq4xKNKK_KjHHOb9C0778AgBEJQ2GEmo1qm-Ddr2nw1vnu6LRTRzzruhh-nFfJ4G0K-lP1yWm8OLXKD3yL4RCV9649YBsifnVNlkz0eGN6E7-Di3jdJTdoVXKhvUXXVh17Mz1zgt6fHnfzl2y1fl7OZ6vMEcZSxgQ3IIUwXFta11AJDVZUWlJClWpKVROwFKxSVFstCjZkUWleG1NS3kg2QXf_XmeM2Xdx2B9P-_Mp7A_LGFvl
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CoDIT55151.2022.9804070
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 166549607X
9781665496070
EISSN 2576-3555
EndPage 474
ExternalDocumentID 9804070
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i133t-385e0988e5cf2bb078c0f87c9212aad6ab10f20faa2cfc843cfc47c5bee625d93
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000846862800078&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:23:36 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i133t-385e0988e5cf2bb078c0f87c9212aad6ab10f20faa2cfc843cfc47c5bee625d93
PageCount 7
ParticipantIDs ieee_primary_9804070
PublicationCentury 2000
PublicationDate 2022-May-17
PublicationDateYYYYMMDD 2022-05-17
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-May-17
  day: 17
PublicationDecade 2020
PublicationTitle International Conference on Control, Decision and Information Technologies (Online)
PublicationTitleAbbrev CODIT
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003190022
Score 1.7946738
Snippet Midterm reservoir management problems are often cast as stochastic dynamic programs, due to their sequential nature. Because of the well known dimensionality...
SourceID ieee
SourceType Publisher
StartPage 468
SubjectTerms Complexity theory
Dynamic programming
Information technology
Monte Carlo methods
Proposals
Reservoirs
Upper bound
Title Randomized Simplicial Approximate Stochastic Dynamic Programming for Mid-term Reservoir Optimization
URI https://ieeexplore.ieee.org/document/9804070
Volume 1
WOSCitedRecordID wos000846862800078&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9zePDkxyZ-k4NHu6Xp0iRH2RwKOoebstvIxyv2sFZqN8S_3qSrE8GLlxIKTSB5zfu95Pd7D6FLoiNIWCiCSFkZeA8VSMIgICAkNxHXUGlhXu75aCRmMzluoKuNFgYAKvIZdHyzusu3uVn6o7KuFM7kuAvQtziP11qtzXmKMyXvj2oKV0hkt58P7qYOEDAfBlLaqb_-VUal8iLD3f-Nv4faP3I8PN44mn3UgOwA7X7XY8D179lC9kllNl-kn2DxJK2o4s668LVPG_6ROmgKeFLm5lX53Mx4sK5F73v2DK2F6xo7BIsfUhv4_Rp7Ul6xytMCP7p9ZVELNtvoeXgz7d8GdRWFIHXxZxlEggGRQgAzCdXaQQJDEsGNdE5LKRsrHZKEkkQpahIjepF79rhhGsDFRlZGh6iZ5RkcIcxAK0ZNHClNe0Ix5dAamChmlBhjtDpGLT9p87d1oox5PV8nf78-RTt-XfxVfMjPULMslnCOts2qTN-Li2p1vwB2GKjh
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4ImugJFYy_7cGjg65bWXs0IIEISAQNN9J2b3EHNjMHMf71tmNiTLx4WZola5r2re977fe9h9ANUR5EzOWOJ0PhWA_lCMLAIcBFoL1AQaGFeRkG4zGfz8Wkgm63WhgAKMhn0LTN4i4_TPXKHpW1BDcmF5gAfYf5PiUbtdb2RMUYk_VIJYnLJaLVSbuDmYEEzAaClDbL738VUin8SK_2vxEcoMaPIA9Ptq7mEFUgOUK174oMuPxB6yh8kkmYLuNPCPE0Lsjixr7wnU0c_hEbcAp4mqf6VdrszLi7qUZve7YcraXpGhsMi0dx6NgdG1taXrZO4ww_mp1lWUo2G-i5dz_r9J2yjoITmwg0dzzOgAjOgemIKmVAgSYRD7QwbkvKsC2VSyJKIimpjjT3PfP0A80UgImOQuEdo2qSJnCCMAMlGdVtTyrqc8mkwWugvTajRGut5Cmq20lbvG1SZSzK-Tr7-_U12uvPRsPFcDB-OEf7do3sxbwbXKBqnq3gEu3qdR6_Z1fFSn8BaBesKA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+Conference+on+Control%2C+Decision+and+Information+Technologies+%28Online%29&rft.atitle=Randomized+Simplicial+Approximate+Stochastic+Dynamic+Programming+for+Mid-term+Reservoir+Optimization&rft.au=Zephyr%2C+Luckny&rft.au=Lamond%2C+Bernard+F.&rft.date=2022-05-17&rft.pub=IEEE&rft.eissn=2576-3555&rft.volume=1&rft.spage=468&rft.epage=474&rft_id=info:doi/10.1109%2FCoDIT55151.2022.9804070&rft.externalDocID=9804070