Android malware detection: An eigenspace analysis approach

The battle to mitigate Android malware has become more critical with the emergence of new strains incorporating increasingly sophisticated evasion techniques, in turn necessitating more advanced detection capabilities. Hence, in this paper we propose and evaluate a machine learning based approach ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2015 Science and Information Conference (SAI) S. 1236 - 1242
Hauptverfasser: Yerima, Suleiman Y., Sezer, Sakir, Muttik, Igor
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.07.2015
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The battle to mitigate Android malware has become more critical with the emergence of new strains incorporating increasingly sophisticated evasion techniques, in turn necessitating more advanced detection capabilities. Hence, in this paper we propose and evaluate a machine learning based approach based on eigenspace analysis for Android malware detection using features derived from static analysis characterization of Android applications. Empirical evaluation with a dataset of real malware and benign samples show that detection rate of over 96% with a very low false positive rate is achievable using the proposed method.
DOI:10.1109/SAI.2015.7237302