Android malware detection: An eigenspace analysis approach

The battle to mitigate Android malware has become more critical with the emergence of new strains incorporating increasingly sophisticated evasion techniques, in turn necessitating more advanced detection capabilities. Hence, in this paper we propose and evaluate a machine learning based approach ba...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2015 Science and Information Conference (SAI) s. 1236 - 1242
Hlavní autoři: Yerima, Suleiman Y., Sezer, Sakir, Muttik, Igor
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.07.2015
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The battle to mitigate Android malware has become more critical with the emergence of new strains incorporating increasingly sophisticated evasion techniques, in turn necessitating more advanced detection capabilities. Hence, in this paper we propose and evaluate a machine learning based approach based on eigenspace analysis for Android malware detection using features derived from static analysis characterization of Android applications. Empirical evaluation with a dataset of real malware and benign samples show that detection rate of over 96% with a very low false positive rate is achievable using the proposed method.
DOI:10.1109/SAI.2015.7237302