Image retrieval based on Multi Expression Programming algorithms

The effectiveness of content-based image retrieval (CBIR) systems can be improved by combining image features or by weighting image similarities, as computed from multiple feature vectors. However, feature combination does not always make sense and the combined similarity function can be more comple...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings (International Conference on Natural Computation. Print) S. 1359 - 1364
Hauptverfasser: Wang, Weihong, Lin, Wenrou, Li, Qu
Format: Tagungsbericht Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 01.07.2013
Schlagworte:
ISSN:2157-9555, 2157-9563
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effectiveness of content-based image retrieval (CBIR) systems can be improved by combining image features or by weighting image similarities, as computed from multiple feature vectors. However, feature combination does not always make sense and the combined similarity function can be more complex than weight-based functions to better satisfy the users' expectations. This paper addressed this problem by presenting a Multi-Expression Programming (MEP) framework to design combined similarity functions. This method allows nonlinear combination of image similarities and is validated through experiments, where the images are retrieved based on the shape of their objects. Experimental results demonstrate that the MEP framework is suitable for the design of effective combinations functions.
Bibliographie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
ISSN:2157-9555
2157-9563
DOI:10.1109/ICNC.2013.6818191