Image retrieval based on Multi Expression Programming algorithms

The effectiveness of content-based image retrieval (CBIR) systems can be improved by combining image features or by weighting image similarities, as computed from multiple feature vectors. However, feature combination does not always make sense and the combined similarity function can be more comple...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings (International Conference on Natural Computation. Print) s. 1359 - 1364
Hlavní autoři: Wang, Weihong, Lin, Wenrou, Li, Qu
Médium: Konferenční příspěvek Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.07.2013
Témata:
ISSN:2157-9555, 2157-9563
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The effectiveness of content-based image retrieval (CBIR) systems can be improved by combining image features or by weighting image similarities, as computed from multiple feature vectors. However, feature combination does not always make sense and the combined similarity function can be more complex than weight-based functions to better satisfy the users' expectations. This paper addressed this problem by presenting a Multi-Expression Programming (MEP) framework to design combined similarity functions. This method allows nonlinear combination of image similarities and is validated through experiments, where the images are retrieved based on the shape of their objects. Experimental results demonstrate that the MEP framework is suitable for the design of effective combinations functions.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
ISSN:2157-9555
2157-9563
DOI:10.1109/ICNC.2013.6818191