Low-Complexity LSQR-Based Linear Precoding for Massive MIMO Systems
Massive multiple-input multiple-output (MIMO) using a large number of antennas at the base station (BS) is a promising technique for the next-generation 5G wireless communications. It has been shown that linear precoding schemes can achieve near-optimal performance in massive MIMO systems. However,...
Uložené v:
| Vydané v: | 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall) s. 1 - 5 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.09.2015
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Massive multiple-input multiple-output (MIMO) using a large number of antennas at the base station (BS) is a promising technique for the next-generation 5G wireless communications. It has been shown that linear precoding schemes can achieve near-optimal performance in massive MIMO systems. However, classical linear precoding schemes such as zero- forcing (ZF) precoding suffer from high complexity due to the fact they require the matrix inversion of a large size. In this paper, we propose a low-complexity precoding scheme based on the least square QR (LSQR) method to realize the near-optimal performance of ZF precoding without matrix inversion. We show that the proposed LSQR-based precoding can reduce the complexity of ZF precoding by about one order of magnitude. Simulation results verify that the proposed LSQR-based precoding can provide a better tradeoff between complexity and performance than the recently proposed Neumann-based precoding. |
|---|---|
| DOI: | 10.1109/VTCFall.2015.7391016 |