A Fuzzy-based approach to programming language independent source-code plagiarism detection
Source-code plagiarism detection in programming, concerns the identification of source-code files that contain similar and/or identical source-code fragments. Fuzzy clustering approaches are a suitable solution to detecting source-code plagiarism due to their capability to capture the qualitative an...
Gespeichert in:
| Veröffentlicht in: | 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) S. 1 - 8 |
|---|---|
| Hauptverfasser: | , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.08.2015
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Source-code plagiarism detection in programming, concerns the identification of source-code files that contain similar and/or identical source-code fragments. Fuzzy clustering approaches are a suitable solution to detecting source-code plagiarism due to their capability to capture the qualitative and semantic elements of similarity. This paper proposes a novel Fuzzy-based approach to source-code plagiarism detection, based on Fuzzy C-Means and the Adaptive-Neuro Fuzzy Inference System (ANFIS). In addition, performance of the proposed approach is compared to the Self- Organising Map (SOM) and the state-of-the-art plagiarism detection Running Karp-Rabin Greedy-String-Tiling (RKR-GST) algorithms. The advantages of the proposed approach are that it is programming language independent, and hence there is no need to develop any parsers or compilers in order for the fuzzy-based predictor to provide detection in different programming languages. The results demonstrate that the performance of the proposed fuzzy-based approach overcomes all other approaches on well-known source code datasets, and reveals promising results as an efficient and reliable approach to source-code plagiarism detection. |
|---|---|
| AbstractList | Source-code plagiarism detection in programming, concerns the identification of source-code files that contain similar and/or identical source-code fragments. Fuzzy clustering approaches are a suitable solution to detecting source-code plagiarism due to their capability to capture the qualitative and semantic elements of similarity. This paper proposes a novel Fuzzy-based approach to source-code plagiarism detection, based on Fuzzy C-Means and the Adaptive-Neuro Fuzzy Inference System (ANFIS). In addition, performance of the proposed approach is compared to the Self- Organising Map (SOM) and the state-of-the-art plagiarism detection Running Karp-Rabin Greedy-String-Tiling (RKR-GST) algorithms. The advantages of the proposed approach are that it is programming language independent, and hence there is no need to develop any parsers or compilers in order for the fuzzy-based predictor to provide detection in different programming languages. The results demonstrate that the performance of the proposed fuzzy-based approach overcomes all other approaches on well-known source code datasets, and reveals promising results as an efficient and reliable approach to source-code plagiarism detection. |
| Author | Cosma, Georgina Acampora, Giovanni |
| Author_xml | – sequence: 1 givenname: Giovanni surname: Acampora fullname: Acampora, Giovanni email: giovanni.acampora@ntu.ac.uk organization: Sch. of Sci. & Technol., Nottingham Trent Univ., Nottingham, UK – sequence: 2 givenname: Georgina surname: Cosma fullname: Cosma, Georgina email: georgina.cosma@ntu.ac.uk organization: Sch. of Sci. & Technol., Nottingham Trent Univ., Nottingham, UK |
| BookMark | eNotj7FqwzAURVVohzbNFxSKfsCuZFmWNIZgt4FAlmZJh_AsPbsCWzK2MyRfX0Oz3HuGy4H7Qh5DDEjIO2cp58x8VMfTKdmVZZlmjMtUCaGMkA9kbZTmeaGEyjNdPJOfDa0ut9s1qWFCR2EYxgj2l86RLtSO0Pc-tLSD0F6gReqDwwGXCDOd4mW0mNjokA4dtB5GP_XU4Yx29jG8kqcGugnX916RY1V-b7-S_eFzt93sE88zMSe2YbK2OThZZNwyFLnjrHYFNoXlAhqbKyWkBiWRcb1sdcNRGWOYc6CdEivy9u_1iHgeRt_DeD3fL4s_b1dTJQ |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/FUZZ-IEEE.2015.7337935 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781467374286 1467374288 |
| EndPage | 8 |
| ExternalDocumentID | 7337935 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH CBEJK RIE RIO |
| ID | FETCH-LOGICAL-i123t-cf05bc4ad5621c0e34d10bd6ef6c13afc477358a75e01805b8f1e79990dda8d73 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jun 29 18:37:28 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i123t-cf05bc4ad5621c0e34d10bd6ef6c13afc477358a75e01805b8f1e79990dda8d73 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_7337935 |
| PublicationCentury | 2000 |
| PublicationDate | 20150801 |
| PublicationDateYYYYMMDD | 2015-08-01 |
| PublicationDate_xml | – month: 08 year: 2015 text: 20150801 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) |
| PublicationTitleAbbrev | FUZZ-IEEE |
| PublicationYear | 2015 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.7003974 |
| Snippet | Source-code plagiarism detection in programming, concerns the identification of source-code files that contain similar and/or identical source-code fragments.... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Clustering algorithms Java Measurement Plagiarism Prediction algorithms Software algorithms |
| Title | A Fuzzy-based approach to programming language independent source-code plagiarism detection |
| URI | https://ieeexplore.ieee.org/document/7337935 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB3a4sGTSit-k4NH02abzSZ7FHHxVHqwUOqh5FMW7LbUbcH-epPdbUXw4i2EQGASeJPJe_MA7mWilOaCYRYb7h8ojGDBRIKl9nDGLRkqriuzCT4aiek0Hbfg4aCFsdZW5DPbD8PqL98s9SaUygacUn-dWBvanCe1VqsR_UYkHWST2QyHJ1IgbLF-s_iXa0oFGtnJ_7Y7hd6P-g6ND7hyBi1bdOHtEWWb3e4LB9gxaN8KHJVL1FCsFn4x2pcfUX6wty1RXaDHQb2OVh_yPQ_GgwtkbFnxsIoeTLLn16cX3Bgj4NwDTYm1I0zpWBqfvESaWBqbiCiTWJfoiEqnY84pE5IzG_pzMSVcZLlPBYkxUhhOz6FTLAt7AcgpJ4aWauXzmDh1ShIXkjwipUtFQugldENg5qu698W8icnV39PXcBxiXxPkbqBTrjf2Fo70tsw_13fVgX0D7W6a-w |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxFAy1CnpSacVvc_Bo2myz2WSPIi4Va-mhhVIPJZ-yYLelbgX76012txXBi7cQAoEkMO-9zLwB4FZEUirGKaKhZi5BoRhxyiMklIMzZnBHMlWYTbB-n4_H8aAG7rZaGGNMQT4zLT8s_vL1XK18qazNCHHPie6AXRqGHVyqtSrZb4DjdjKaTJBPkjxli7aq5b98UwrYSA7_t-ERaP7o7-BgiyzHoGayBni9h8lqvf5CHng03DQDh_kcViSrmVsMNwVImG4NbnNYluiR16_Dxbt4S7314AxqkxdMrKwJRsnj8KGLKmsElDqoyZGymEoVCu3Cl0BhQ0IdYKkjYyMVEGFVyBihXDBqfIcuKrkNDHPBINZacM3ICahn88ycAmil5R1DlHSRTBhbKbD1YR4WwsY8wuQMNPzBTBdl94tpdSbnf0_fgP3u8KU37T31ny_Agb-Hki53Cer5cmWuwJ76zNOP5XVxed8oXp5C |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+IEEE+International+Conference+on+Fuzzy+Systems+%28FUZZ-IEEE%29&rft.atitle=A+Fuzzy-based+approach+to+programming+language+independent+source-code+plagiarism+detection&rft.au=Acampora%2C+Giovanni&rft.au=Cosma%2C+Georgina&rft.date=2015-08-01&rft.pub=IEEE&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FFUZZ-IEEE.2015.7337935&rft.externalDocID=7337935 |