A Fuzzy-based approach to programming language independent source-code plagiarism detection

Source-code plagiarism detection in programming, concerns the identification of source-code files that contain similar and/or identical source-code fragments. Fuzzy clustering approaches are a suitable solution to detecting source-code plagiarism due to their capability to capture the qualitative an...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) s. 1 - 8
Hlavní autoři: Acampora, Giovanni, Cosma, Georgina
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.08.2015
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Source-code plagiarism detection in programming, concerns the identification of source-code files that contain similar and/or identical source-code fragments. Fuzzy clustering approaches are a suitable solution to detecting source-code plagiarism due to their capability to capture the qualitative and semantic elements of similarity. This paper proposes a novel Fuzzy-based approach to source-code plagiarism detection, based on Fuzzy C-Means and the Adaptive-Neuro Fuzzy Inference System (ANFIS). In addition, performance of the proposed approach is compared to the Self- Organising Map (SOM) and the state-of-the-art plagiarism detection Running Karp-Rabin Greedy-String-Tiling (RKR-GST) algorithms. The advantages of the proposed approach are that it is programming language independent, and hence there is no need to develop any parsers or compilers in order for the fuzzy-based predictor to provide detection in different programming languages. The results demonstrate that the performance of the proposed fuzzy-based approach overcomes all other approaches on well-known source code datasets, and reveals promising results as an efficient and reliable approach to source-code plagiarism detection.
AbstractList Source-code plagiarism detection in programming, concerns the identification of source-code files that contain similar and/or identical source-code fragments. Fuzzy clustering approaches are a suitable solution to detecting source-code plagiarism due to their capability to capture the qualitative and semantic elements of similarity. This paper proposes a novel Fuzzy-based approach to source-code plagiarism detection, based on Fuzzy C-Means and the Adaptive-Neuro Fuzzy Inference System (ANFIS). In addition, performance of the proposed approach is compared to the Self- Organising Map (SOM) and the state-of-the-art plagiarism detection Running Karp-Rabin Greedy-String-Tiling (RKR-GST) algorithms. The advantages of the proposed approach are that it is programming language independent, and hence there is no need to develop any parsers or compilers in order for the fuzzy-based predictor to provide detection in different programming languages. The results demonstrate that the performance of the proposed fuzzy-based approach overcomes all other approaches on well-known source code datasets, and reveals promising results as an efficient and reliable approach to source-code plagiarism detection.
Author Cosma, Georgina
Acampora, Giovanni
Author_xml – sequence: 1
  givenname: Giovanni
  surname: Acampora
  fullname: Acampora, Giovanni
  email: giovanni.acampora@ntu.ac.uk
  organization: Sch. of Sci. & Technol., Nottingham Trent Univ., Nottingham, UK
– sequence: 2
  givenname: Georgina
  surname: Cosma
  fullname: Cosma, Georgina
  email: georgina.cosma@ntu.ac.uk
  organization: Sch. of Sci. & Technol., Nottingham Trent Univ., Nottingham, UK
BookMark eNotj7FqwzAURVVohzbNFxSKfsCuZFmWNIZgt4FAlmZJh_AsPbsCWzK2MyRfX0Oz3HuGy4H7Qh5DDEjIO2cp58x8VMfTKdmVZZlmjMtUCaGMkA9kbZTmeaGEyjNdPJOfDa0ut9s1qWFCR2EYxgj2l86RLtSO0Pc-tLSD0F6gReqDwwGXCDOd4mW0mNjokA4dtB5GP_XU4Yx29jG8kqcGugnX916RY1V-b7-S_eFzt93sE88zMSe2YbK2OThZZNwyFLnjrHYFNoXlAhqbKyWkBiWRcb1sdcNRGWOYc6CdEivy9u_1iHgeRt_DeD3fL4s_b1dTJQ
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/FUZZ-IEEE.2015.7337935
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781467374286
1467374288
EndPage 8
ExternalDocumentID 7337935
Genre orig-research
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i123t-cf05bc4ad5621c0e34d10bd6ef6c13afc477358a75e01805b8f1e79990dda8d73
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:28 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i123t-cf05bc4ad5621c0e34d10bd6ef6c13afc477358a75e01805b8f1e79990dda8d73
PageCount 8
ParticipantIDs ieee_primary_7337935
PublicationCentury 2000
PublicationDate 20150801
PublicationDateYYYYMMDD 2015-08-01
PublicationDate_xml – month: 08
  year: 2015
  text: 20150801
  day: 01
PublicationDecade 2010
PublicationTitle 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)
PublicationTitleAbbrev FUZZ-IEEE
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7003974
Snippet Source-code plagiarism detection in programming, concerns the identification of source-code files that contain similar and/or identical source-code fragments....
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Clustering algorithms
Java
Measurement
Plagiarism
Prediction algorithms
Software algorithms
Title A Fuzzy-based approach to programming language independent source-code plagiarism detection
URI https://ieeexplore.ieee.org/document/7337935
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA7b8OBJZRN_k4NHs6VL2yRHEYsHGTs4GPMw8uNFCq4bsxPcX2_SdhPBi7dSXgi8Br6X1-_7HkK3jqbCcSNIDFyR2KiE6ED788WHsloOFa1Nkp75aCSmUzluobu9FgYAKvIZ9MNj9S_fLs0mtMoGnDF_nJI2anOe1lqtRvQbUTnIJrMZCVekQNhK-k3wr6kpFWhkR__b7hj1ftR3eLzHlRPUgqKLXu9xttluv0iAHYt3VuC4XOKGYrXwwXjXfsT5frxtiesGPQnqdbx6V295GDy4wBbKiodV9NAke3x5eCLNYASSe6ApiXE00SZW1hcvkaHAYhtRbVNwqYmYcibmnCVC8QSCP1eihYuA-1KQWquE5ewUdYplAWcISwFOSY_q2gQvQC1lPFROcK39WknZOeqGxMxXtffFvMnJxd-vL9FhyH1NkLtCnXK9gWt0YD7L_GN9U32wb4qXmwM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxFAy1CnpSacVvc_Bo2mw3aZKjiKViLT20UOqh5FMW7LbUrWB_vcnutiJ48RZCQiAJzMvLzDwAbh1uc8c0R8QyiYiWFKlA-_PBhzRKtCQuTJJ6rN_n47EYVMDdVgtjrc3JZ7YRmvlfvpnrVUiVNVkc--tEd8AuJaSFC7VWKfuNsGh2RpMJCo-kQNmijXL4r7opOWx0Dv-34BGo_-jv4GCLLMegYtMaeL2HndV6_YUC8Bi4MQOH2RyWJKuZHww3CUiYbAvcZrBI0aOgX4eLd_mWhNKDM2hsljOx0joYdR6HD11UlkZAiYeaDGmHqdJEGh--RBrbmJgIK9O2rq2jWDpNGIspl4za4NBFFXeRZT4YxMZIblh8AqrpPLWnAApunRQe15UOboBKCNKSjjOl_FyB4zNQCxszXRTuF9NyT87_7r4B-93hS2_ae-o_X4CDcA4FXe4SVLPlyl6BPf2ZJR_L6_zwvgHGlp5K
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+IEEE+International+Conference+on+Fuzzy+Systems+%28FUZZ-IEEE%29&rft.atitle=A+Fuzzy-based+approach+to+programming+language+independent+source-code+plagiarism+detection&rft.au=Acampora%2C+Giovanni&rft.au=Cosma%2C+Georgina&rft.date=2015-08-01&rft.pub=IEEE&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FFUZZ-IEEE.2015.7337935&rft.externalDocID=7337935