A Fuzzy-based approach to programming language independent source-code plagiarism detection
Source-code plagiarism detection in programming, concerns the identification of source-code files that contain similar and/or identical source-code fragments. Fuzzy clustering approaches are a suitable solution to detecting source-code plagiarism due to their capability to capture the qualitative an...
Uloženo v:
| Vydáno v: | 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) s. 1 - 8 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.08.2015
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Source-code plagiarism detection in programming, concerns the identification of source-code files that contain similar and/or identical source-code fragments. Fuzzy clustering approaches are a suitable solution to detecting source-code plagiarism due to their capability to capture the qualitative and semantic elements of similarity. This paper proposes a novel Fuzzy-based approach to source-code plagiarism detection, based on Fuzzy C-Means and the Adaptive-Neuro Fuzzy Inference System (ANFIS). In addition, performance of the proposed approach is compared to the Self- Organising Map (SOM) and the state-of-the-art plagiarism detection Running Karp-Rabin Greedy-String-Tiling (RKR-GST) algorithms. The advantages of the proposed approach are that it is programming language independent, and hence there is no need to develop any parsers or compilers in order for the fuzzy-based predictor to provide detection in different programming languages. The results demonstrate that the performance of the proposed fuzzy-based approach overcomes all other approaches on well-known source code datasets, and reveals promising results as an efficient and reliable approach to source-code plagiarism detection. |
|---|---|
| AbstractList | Source-code plagiarism detection in programming, concerns the identification of source-code files that contain similar and/or identical source-code fragments. Fuzzy clustering approaches are a suitable solution to detecting source-code plagiarism due to their capability to capture the qualitative and semantic elements of similarity. This paper proposes a novel Fuzzy-based approach to source-code plagiarism detection, based on Fuzzy C-Means and the Adaptive-Neuro Fuzzy Inference System (ANFIS). In addition, performance of the proposed approach is compared to the Self- Organising Map (SOM) and the state-of-the-art plagiarism detection Running Karp-Rabin Greedy-String-Tiling (RKR-GST) algorithms. The advantages of the proposed approach are that it is programming language independent, and hence there is no need to develop any parsers or compilers in order for the fuzzy-based predictor to provide detection in different programming languages. The results demonstrate that the performance of the proposed fuzzy-based approach overcomes all other approaches on well-known source code datasets, and reveals promising results as an efficient and reliable approach to source-code plagiarism detection. |
| Author | Cosma, Georgina Acampora, Giovanni |
| Author_xml | – sequence: 1 givenname: Giovanni surname: Acampora fullname: Acampora, Giovanni email: giovanni.acampora@ntu.ac.uk organization: Sch. of Sci. & Technol., Nottingham Trent Univ., Nottingham, UK – sequence: 2 givenname: Georgina surname: Cosma fullname: Cosma, Georgina email: georgina.cosma@ntu.ac.uk organization: Sch. of Sci. & Technol., Nottingham Trent Univ., Nottingham, UK |
| BookMark | eNotj7FqwzAURVVohzbNFxSKfsCuZFmWNIZgt4FAlmZJh_AsPbsCWzK2MyRfX0Oz3HuGy4H7Qh5DDEjIO2cp58x8VMfTKdmVZZlmjMtUCaGMkA9kbZTmeaGEyjNdPJOfDa0ut9s1qWFCR2EYxgj2l86RLtSO0Pc-tLSD0F6gReqDwwGXCDOd4mW0mNjokA4dtB5GP_XU4Yx29jG8kqcGugnX916RY1V-b7-S_eFzt93sE88zMSe2YbK2OThZZNwyFLnjrHYFNoXlAhqbKyWkBiWRcb1sdcNRGWOYc6CdEivy9u_1iHgeRt_DeD3fL4s_b1dTJQ |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/FUZZ-IEEE.2015.7337935 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781467374286 1467374288 |
| EndPage | 8 |
| ExternalDocumentID | 7337935 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH CBEJK RIE RIO |
| ID | FETCH-LOGICAL-i123t-cf05bc4ad5621c0e34d10bd6ef6c13afc477358a75e01805b8f1e79990dda8d73 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jun 29 18:37:28 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i123t-cf05bc4ad5621c0e34d10bd6ef6c13afc477358a75e01805b8f1e79990dda8d73 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_7337935 |
| PublicationCentury | 2000 |
| PublicationDate | 20150801 |
| PublicationDateYYYYMMDD | 2015-08-01 |
| PublicationDate_xml | – month: 08 year: 2015 text: 20150801 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) |
| PublicationTitleAbbrev | FUZZ-IEEE |
| PublicationYear | 2015 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.7003974 |
| Snippet | Source-code plagiarism detection in programming, concerns the identification of source-code files that contain similar and/or identical source-code fragments.... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Clustering algorithms Java Measurement Plagiarism Prediction algorithms Software algorithms |
| Title | A Fuzzy-based approach to programming language independent source-code plagiarism detection |
| URI | https://ieeexplore.ieee.org/document/7337935 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA7b8OBJZRN_k4NHs6VL2yRHEYsHGTs4GPMw8uNFCq4bsxPcX2_SdhPBi7dSXgi8Br6X1-_7HkK3jqbCcSNIDFyR2KiE6ED788WHsloOFa1Nkp75aCSmUzluobu9FgYAKvIZ9MNj9S_fLs0mtMoGnDF_nJI2anOe1lqtRvQbUTnIJrMZCVekQNhK-k3wr6kpFWhkR__b7hj1ftR3eLzHlRPUgqKLXu9xttluv0iAHYt3VuC4XOKGYrXwwXjXfsT5frxtiesGPQnqdbx6V295GDy4wBbKiodV9NAke3x5eCLNYASSe6ApiXE00SZW1hcvkaHAYhtRbVNwqYmYcibmnCVC8QSCP1eihYuA-1KQWquE5ewUdYplAWcISwFOSY_q2gQvQC1lPFROcK39WknZOeqGxMxXtffFvMnJxd-vL9FhyH1NkLtCnXK9gWt0YD7L_GN9U32wb4qXmwM |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxFAy1CnpSacVvc_Bo2mw3aZKjiKViLT20UOqh5FMW7LbUrWB_vcnutiJ48RZCQiAJzMvLzDwAbh1uc8c0R8QyiYiWFKlA-_PBhzRKtCQuTJJ6rN_n47EYVMDdVgtjrc3JZ7YRmvlfvpnrVUiVNVkc--tEd8AuJaSFC7VWKfuNsGh2RpMJCo-kQNmijXL4r7opOWx0Dv-34BGo_-jv4GCLLMegYtMaeL2HndV6_YUC8Bi4MQOH2RyWJKuZHww3CUiYbAvcZrBI0aOgX4eLd_mWhNKDM2hsljOx0joYdR6HD11UlkZAiYeaDGmHqdJEGh--RBrbmJgIK9O2rq2jWDpNGIspl4za4NBFFXeRZT4YxMZIblh8AqrpPLWnAApunRQe15UOboBKCNKSjjOl_FyB4zNQCxszXRTuF9NyT87_7r4B-93hS2_ae-o_X4CDcA4FXe4SVLPlyl6BPf2ZJR_L6_zwvgHGlp5K |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+IEEE+International+Conference+on+Fuzzy+Systems+%28FUZZ-IEEE%29&rft.atitle=A+Fuzzy-based+approach+to+programming+language+independent+source-code+plagiarism+detection&rft.au=Acampora%2C+Giovanni&rft.au=Cosma%2C+Georgina&rft.date=2015-08-01&rft.pub=IEEE&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FFUZZ-IEEE.2015.7337935&rft.externalDocID=7337935 |