Multichannel spectral factorization algorithm using polynomial matrix eigenvalue decomposition

In this paper, we present a new multichannel spectral factorization algorithm which can be utilized to calculate the approximate spectral factor of any para-Hermitian polynomial matrix. The proposed algorithm is based on an iterative method for polynomial matrix eigenvalue decomposition (PEVD). By u...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Conference record - Asilomar Conference on Signals, Systems, & Computers s. 1714 - 1718
Hlavní autoři: Wang, Zeliang, McWhirter, John G., Weiss, Stephan
Médium: Konferenční příspěvek Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.11.2015
Témata:
ISSN:1058-6393
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we present a new multichannel spectral factorization algorithm which can be utilized to calculate the approximate spectral factor of any para-Hermitian polynomial matrix. The proposed algorithm is based on an iterative method for polynomial matrix eigenvalue decomposition (PEVD). By using the PEVD algorithm, the multichannel spectral factorization problem is simply broken down to a set of single channel problems which can be solved by means of existing one-dimensional spectral factorization algorithms. In effect, it transforms the multichannel spectral factorization problem into one which is much easier to solve.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
ISSN:1058-6393
DOI:10.1109/ACSSC.2015.7421442