Multichannel spectral factorization algorithm using polynomial matrix eigenvalue decomposition

In this paper, we present a new multichannel spectral factorization algorithm which can be utilized to calculate the approximate spectral factor of any para-Hermitian polynomial matrix. The proposed algorithm is based on an iterative method for polynomial matrix eigenvalue decomposition (PEVD). By u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Conference record - Asilomar Conference on Signals, Systems, & Computers S. 1714 - 1718
Hauptverfasser: Wang, Zeliang, McWhirter, John G., Weiss, Stephan
Format: Tagungsbericht Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 01.11.2015
Schlagworte:
ISSN:1058-6393
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present a new multichannel spectral factorization algorithm which can be utilized to calculate the approximate spectral factor of any para-Hermitian polynomial matrix. The proposed algorithm is based on an iterative method for polynomial matrix eigenvalue decomposition (PEVD). By using the PEVD algorithm, the multichannel spectral factorization problem is simply broken down to a set of single channel problems which can be solved by means of existing one-dimensional spectral factorization algorithms. In effect, it transforms the multichannel spectral factorization problem into one which is much easier to solve.
Bibliographie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
ISSN:1058-6393
DOI:10.1109/ACSSC.2015.7421442