Independent Metropolis-Hastings-Klein algorithm for lattice Gaussian sampling
Sampling from the lattice Gaussian distribution is emerging as an important problem in coding and cryptography. In this paper, a Markov chain Monte Carlo (MCMC) algorithm referred to as the independent Metropolis-Hastings-Klein (MHK) algorithm is proposed for lattice Gaussian sampling, which overcom...
Uložené v:
| Vydané v: | Proceedings / IEEE International Symposium on Information Theory s. 2470 - 2474 |
|---|---|
| Hlavní autori: | , |
| Médium: | Konferenčný príspevok.. Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.06.2015
|
| Predmet: | |
| ISSN: | 2157-8095, 2157-8117 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Sampling from the lattice Gaussian distribution is emerging as an important problem in coding and cryptography. In this paper, a Markov chain Monte Carlo (MCMC) algorithm referred to as the independent Metropolis-Hastings-Klein (MHK) algorithm is proposed for lattice Gaussian sampling, which overcomes the restriction on the standard deviation confronted by the Klein algorithm. It is proven that the Markov chain arising from the proposed MHK algorithm is uniformly ergodic, namely, it converges to the stationary distribution exponentially fast. Moreover, the rate of convergence is explicitly calculated in terms of the theta series, making it possible to predict the mixing time of the underlying Markov chain. |
|---|---|
| Bibliografia: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
| ISSN: | 2157-8095 2157-8117 |
| DOI: | 10.1109/ISIT.2015.7282900 |