Blind separation of sparse sources using variational EM
In this paper, we tackle the general linear instantaneous model (possibly underdetermined and noisy) using the assumption of sparsity of the sources on a given dictionary. We model the sparsity of expansion coefficients with a Student t prior. The conjugate-exponential characterisation of the t dist...
Uloženo v:
| Vydáno v: | 13th European Signal Processing Conference (EUSIPCO 2005) s. 1 - 4 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.09.2005
|
| Témata: | |
| ISBN: | 1604238216, 9781604238211 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we tackle the general linear instantaneous model (possibly underdetermined and noisy) using the assumption of sparsity of the sources on a given dictionary. We model the sparsity of expansion coefficients with a Student t prior. The conjugate-exponential characterisation of the t distribution as an infinite mixture of scaled Gaussians enables us to derive an efficient variational expectation maximisation algorithm (V-EM). The resulting deterministic algorithm has superior properties in terms of computation time and achieves a separation performance comparable in quality to alternative methods based on Markov Chain Monte Carlo (MCMC). |
|---|---|
| Bibliografie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
| ISBN: | 1604238216 9781604238211 |

