Blind separation of sparse sources using variational EM

In this paper, we tackle the general linear instantaneous model (possibly underdetermined and noisy) using the assumption of sparsity of the sources on a given dictionary. We model the sparsity of expansion coefficients with a Student t prior. The conjugate-exponential characterisation of the t dist...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:13th European Signal Processing Conference (EUSIPCO 2005) s. 1 - 4
Hlavní autoři: Cemgil, Ali Taylan, Fevotte, Cedric, Godsill, Simon J.
Médium: Konferenční příspěvek Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.09.2005
Témata:
ISBN:1604238216, 9781604238211
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we tackle the general linear instantaneous model (possibly underdetermined and noisy) using the assumption of sparsity of the sources on a given dictionary. We model the sparsity of expansion coefficients with a Student t prior. The conjugate-exponential characterisation of the t distribution as an infinite mixture of scaled Gaussians enables us to derive an efficient variational expectation maximisation algorithm (V-EM). The resulting deterministic algorithm has superior properties in terms of computation time and achieves a separation performance comparable in quality to alternative methods based on Markov Chain Monte Carlo (MCMC).
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
ISBN:1604238216
9781604238211