Research on PCA-Kmeans++ clustering algorithm considering Spatiotemporal dimension

Aiming at the problem that traditional clustering algorithms cannot adapt to spatiotemporal data mining, this paper proposes a new clustering algorithm PCA-Kmeans++. First, in order to reduce the interference of data dimension, an improved PCA (principal component analysis) dimensionality reduction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2023 2nd International Conference on 3D Immersion, Interaction and Multi-sensory Experiences (ICDIIME) S. 195 - 201
Hauptverfasser: Huang, Jiale, Dai, Jingtong, Li, Yanjin
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.06.2023
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aiming at the problem that traditional clustering algorithms cannot adapt to spatiotemporal data mining, this paper proposes a new clustering algorithm PCA-Kmeans++. First, in order to reduce the interference of data dimension, an improved PCA (principal component analysis) dimensionality reduction algorithm is built. On this basis, a K-means++algorithm considering space-time dimension is proposed to cluster the reduced factors. Finally, 100000 AFC data are collected for validity verification. The results show that: (1) The improved PCA algorithm has better dimensionality reduction effect. (2) The spatiotemporal clustering algorithm based on K-means++can effectively enhance the efficiency of classification decision-making. This study provides relevant basis and methodology for proposing a generic clustering algorithm.
DOI:10.1109/ICDIIME59043.2023.00042