Radar Jamming Image Recognition based on Deep Learning and Computer Vision

Radar refers to a new method of detecting the positioning, speed, direction and other characteristics of a target through electromagnetic waves or other wavelengths of radiation within a certain range. In practical applications, interference with electromagnetic signals can cause image distortion. I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2024 International Conference on Integrated Circuits and Communication Systems (ICICACS) S. 1 - 5
1. Verfasser: Cheng, Yuxin
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 23.02.2024
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Radar refers to a new method of detecting the positioning, speed, direction and other characteristics of a target through electromagnetic waves or other wavelengths of radiation within a certain range. In practical applications, interference with electromagnetic signals can cause image distortion. In view of this problem, this paper is based on deep learning and computer vision testing to determine whether the distorted radar image can be correctly recognized under the interference of rain and fog. This article takes aircraft, runways and buildings as examples to identify images under radar interference. The experimental results show that the radar interference image recognition performance based on the convolutional neural network (CNN) algorithm in this paper has the best performance, with a recognition accuracy rate of 98.7%. Our proposed method based on deep learning and computer vision has achieved significant performance improvement in radar interference image recognition tasks.
AbstractList Radar refers to a new method of detecting the positioning, speed, direction and other characteristics of a target through electromagnetic waves or other wavelengths of radiation within a certain range. In practical applications, interference with electromagnetic signals can cause image distortion. In view of this problem, this paper is based on deep learning and computer vision testing to determine whether the distorted radar image can be correctly recognized under the interference of rain and fog. This article takes aircraft, runways and buildings as examples to identify images under radar interference. The experimental results show that the radar interference image recognition performance based on the convolutional neural network (CNN) algorithm in this paper has the best performance, with a recognition accuracy rate of 98.7%. Our proposed method based on deep learning and computer vision has achieved significant performance improvement in radar interference image recognition tasks.
Author Cheng, Yuxin
Author_xml – sequence: 1
  givenname: Yuxin
  surname: Cheng
  fullname: Cheng, Yuxin
  email: 18891566389@163.com
  organization: China Huayin Ordnance Test Center,Huayin,China
BookMark eNo1j0tPhDAUhWuiCx3nH7ho3DPeS1tKlwZfTEhMxsd2cqEX0kQKAVz478Woq_MtvpyccyFO4xBZiGuEHSK4m7Ioi9viJQOT4i6FVO8QtMuVzk_E1tmVDCi0xuTnYn8gT5PcU9-H2Mmyp47lgZuhi2EJQ5Q1zezlCnfMo6yYpvgjUvSyGPrxc-FJvod5VS_FWUsfM2__ciPeHu5fi6eken5cB1VJQHRL0qqGGmtNphVkFnzmmCjVlBoFSF7XuVF1ZmudeeUBlXXYQEvKtXULoFFtxNVvb2Dm4ziFnqav4_9F9Q315Es0
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICICACS60521.2024.10498348
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350317558
EndPage 5
ExternalDocumentID 10498348
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-f3cac7756430670d69eaa24a25301ad4b853b67b46d3d013791c0fa39fbf00413
IEDL.DBID RIE
IngestDate Wed May 01 11:50:46 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-f3cac7756430670d69eaa24a25301ad4b853b67b46d3d013791c0fa39fbf00413
PageCount 5
ParticipantIDs ieee_primary_10498348
PublicationCentury 2000
PublicationDate 2024-Feb.-23
PublicationDateYYYYMMDD 2024-02-23
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-Feb.-23
  day: 23
PublicationDecade 2020
PublicationTitle 2024 International Conference on Integrated Circuits and Communication Systems (ICICACS)
PublicationTitleAbbrev ICICACS
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8691989
Snippet Radar refers to a new method of detecting the positioning, speed, direction and other characteristics of a target through electromagnetic waves or other...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Computer vision
Convolutional Neural Networks
Deep learning
Image recognition
Interference
Nonlinear distortion
Radar
Radar Interference
Target recognition
Title Radar Jamming Image Recognition based on Deep Learning and Computer Vision
URI https://ieeexplore.ieee.org/document/10498348
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NT8IwGMbfCPHgSY0Yv9OD1yJbSz-OZkqEGEJQCTfStZ3hwCAI_v2-LZvGgwdvTZNtybt0z96tv-cBuFUeVYZ1FOVpUlBeaEm1sIIqLQLALJSNPt2TZzkcqulUjypYPbIw3vu4-cy3wzD-y3dLuw2fynCFc60YVw1oSCl2sFZlJJp09F0_62f32YsIPCp2filv1wf8ik6JytE7_Oc1j6D1w-CR0be6HMOeL09gMDbY95OBWSxwkvQX-DQg43oP0LIkQZQcwcGD9ytSmae-E1M6Uuc3kEnEyVvw1nt8zZ5olYZA50miN7Rg1lgpu_gKEdgaJ7Q3JuUm7eIaNY7nKLy5kDkXjrlgJKgT2ykM00VeBFctdgrNcln6MyC2q6zCc4TEUO6wR0qdDkGdKs2x-8nNObRCIWarneHFrK7BxR_zl3AQyh1Jb3YFzc16669h335u5h_rm3ibvgDIVpHJ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NT8IwGMbfKJroSY0zftuD1yJbS9cezZQwxIUgEm6kazvDgUEQ_Ptt66bx4MFb02Rb8i7ds3fr73kAbrmxKkNaHNMoLDAtRIwFUwxzwRzAzLjyPt3jfpxlfDIRgwpW9yyMMcZvPjNNN_T_8vVCbdynMrvCqeCE8m3YcdFZFa5VWYmGLXGXJmlyn7wwR6Ta3i-izfqQX-EpXjs6B_-86iEEPxQeGnzryxFsmfIYekNpO3_Uk_O5nUTp3D4P0LDeBbQokZMljezgwZglquxT35AsNaoTHNDYA-UBvHYeR0kXV3kIeBaGYo0LoqSK47Z9iXB0jWbCSBlRGbXtKpWa5lZ6cxbnlGminZWgCFWrkEQUeeF8tcgJNMpFaU4BqTZX3J7DZYZSbbukSAsX1cmj3PY_uTyDwBViuvyyvJjWNTj_Y_4G9rqj5_60n2ZPF7DvSu-5b3IJjfVqY65gV32sZ--ra3_LPgGTlJUS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+International+Conference+on+Integrated+Circuits+and+Communication+Systems+%28ICICACS%29&rft.atitle=Radar+Jamming+Image+Recognition+based+on+Deep+Learning+and+Computer+Vision&rft.au=Cheng%2C+Yuxin&rft.date=2024-02-23&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FICICACS60521.2024.10498348&rft.externalDocID=10498348