Aircraft Accident Prediction Using Machine Learning Classification Algorithms

Air traffic and transportation is the safest form of traffic despite the fact that every year in the world there are a significant number of air traffic accidents and incidents. Safety management and Risk management have always been extremely important factors in aviation. Safety improvement is poss...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2023 5th International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA) s. 185 - 190
Hlavní autori: Kacar, Rade, Culibrk, Darko, Cokorilo, Olja, Mirosavljevic, Petar
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 08.11.2023
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Air traffic and transportation is the safest form of traffic despite the fact that every year in the world there are a significant number of air traffic accidents and incidents. Safety management and Risk management have always been extremely important factors in aviation. Safety improvement is possible through the constant detection and control of hazards as well as causes of accidents and incidents and hard work on their mitigation, removal, or reduction of their consequences. The aim of this paper is to present the application of machine learning classification in air crash severity prediction.
AbstractList Air traffic and transportation is the safest form of traffic despite the fact that every year in the world there are a significant number of air traffic accidents and incidents. Safety management and Risk management have always been extremely important factors in aviation. Safety improvement is possible through the constant detection and control of hazards as well as causes of accidents and incidents and hard work on their mitigation, removal, or reduction of their consequences. The aim of this paper is to present the application of machine learning classification in air crash severity prediction.
Author Kacar, Rade
Cokorilo, Olja
Mirosavljevic, Petar
Culibrk, Darko
Author_xml – sequence: 1
  givenname: Rade
  surname: Kacar
  fullname: Kacar, Rade
  email: kacarrade@gmail.com
  organization: University of Belgrade,Faculty of Transport and Traffic Engineering,Belgrade,Serbia
– sequence: 2
  givenname: Darko
  surname: Culibrk
  fullname: Culibrk, Darko
  email: Darko.Culibrk@mtel.ba
  organization: MTEL,Planning and Development of ISP Network,Banja Luka,Bosnia and Herzegovina
– sequence: 3
  givenname: Olja
  surname: Cokorilo
  fullname: Cokorilo, Olja
  email: oljav@sf.bg.ac.rs
  organization: University of Belgrade,Faculty of Transport and Traffic Engineering,Belgrade,Serbia
– sequence: 4
  givenname: Petar
  surname: Mirosavljevic
  fullname: Mirosavljevic, Petar
  email: perami@sf.bg.ac.rs
  organization: University of Belgrade,Faculty of Transport and Traffic Engineering,Belgrade,Serbia
BookMark eNo1j81KxDAUhSPoQsd5Axd5gdbcJE2TZSn-QYuCdj1k0puZC51U0m58e_8358DH4YNzxc7TnJAxDqIEEO72dej7xgipZCm_sgShtKtAn7Gtq51VlVDCgTSXrG8oh-zjypsQaMS08peMI4WV5sSHhdKB9z4cKSHv0Of0DdrJLwtFCv5n1UyHOdN6PC3X7CL6acHtX2_YcH_31j4W3fPDU9t0BQG4tYhQB5Co61FWqDzIAN4KLfY1QISgqohoXQjSOEAj0IHxwtrRK2XsvtZqw25-vYSIu_dMJ58_dv8v1ScpKkzQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SUMMA60232.2023.10349514
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350309126
EndPage 190
ExternalDocumentID 10349514
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-f17c12e47d25e3a12c1a8040b711f1c35fee89cc2691e60e916a088da3368b743
IEDL.DBID RIE
IngestDate Wed Jan 10 09:28:10 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-f17c12e47d25e3a12c1a8040b711f1c35fee89cc2691e60e916a088da3368b743
PageCount 6
ParticipantIDs ieee_primary_10349514
PublicationCentury 2000
PublicationDate 2023-Nov.-8
PublicationDateYYYYMMDD 2023-11-08
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-Nov.-8
  day: 08
PublicationDecade 2020
PublicationTitle 2023 5th International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA)
PublicationTitleAbbrev SUMMA
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8498601
Snippet Air traffic and transportation is the safest form of traffic despite the fact that every year in the world there are a significant number of air traffic...
SourceID ieee
SourceType Publisher
StartPage 185
SubjectTerms Aircraft Accident
Artificial Neural Networks
Classification algorithms
LightGBM
Machine learning
Machine Learning Classification Algorithms
Multilayer Perceptron
Prediction
Prediction algorithms
Predictive models
Risk management
Safety management
Transportation
XGBoost
Title Aircraft Accident Prediction Using Machine Learning Classification Algorithms
URI https://ieeexplore.ieee.org/document/10349514
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgYmACRBDf8sCaEufDjscIUbG06gBSt8q5nEskSFGa8vs5uwmIgYHNiqxEOvt8L7579xi7s4pAfJpWvtFtmEoUoSmzOLSgQdkqoi1gvdiEms3yxULPe7K658Igoi8-w7Eb-lx-tYatuyojD08IzzvZ6n2l5I6sNVTnRPrenUOFpCDkCFZxMh6m_xJO8XFjcvTPLx6z4IeBx-ffseWE7WFzyqZF3UJrbMcLACcG2tEcl2hxxuU--c-nvjgSed83dcW96qWrB_JLwIu31bqtu9f3TcBeJo_PD09hL4cQ1kLoLrRCgYgxVVWcYWJEDMLk5IOlEsIKSDKLmGuAWGqBMkICfobOkMokicxLQgpnbNSsGzxn3JSAEi39HRGCQGkMgGvMBfQ2XZUZXrDA2WL5set4sRzMcPnH8yt26CzuOXr5NRt17RZv2AF8dvWmvfXr9AVqIpXQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVQQYIJEEV844E1JXYSJx4jRFVEW3UoUrfKuZxLJGhRmvL7ObstiIGBzYqcRDp_3LPv3j3G7mxKID6OS1_oNogVisAUiQwsaEhtGdIUsF5sIh0Os8lEjzZkdc-FQUSffIYd1_Sx_HIBK3dVRis8IjzvZKt3kziW4Zqutc3PCfW924lyRW7IUaxk1Nm-8Es6xXuO7uE__3nE2j8cPD769i7HbAfnJ2yQVzXUxjY8B3ByoA31caEWZ17uw_984NMjkW8qp8641710GUF-EHj-NlvUVfP6vmyzl-7j-KEXbAQRgkoI3QRWpCAkxmkpE4yMkCBMRquwSIWwAqLEImYaQCotUIVI0M_QLlKaKFJZQVjhlLXmizmeMW4KQIWWzkeEIVAZA-BKcwF9TZdFgues7Wwx_VjXvJhuzXDxx_Nbtt8bD_rT_tPw-ZIdOOt7xl52xVpNvcJrtgefTbWsb_yYfQFkqpkX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+5th+International+Conference+on+Control+Systems%2C+Mathematical+Modeling%2C+Automation+and+Energy+Efficiency+%28SUMMA%29&rft.atitle=Aircraft+Accident+Prediction+Using+Machine+Learning+Classification+Algorithms&rft.au=Kacar%2C+Rade&rft.au=Culibrk%2C+Darko&rft.au=Cokorilo%2C+Olja&rft.au=Mirosavljevic%2C+Petar&rft.date=2023-11-08&rft.pub=IEEE&rft.spage=185&rft.epage=190&rft_id=info:doi/10.1109%2FSUMMA60232.2023.10349514&rft.externalDocID=10349514