A Novel Parameter Optimization Metaheuristic: Human Habitation Behavior Based Optimization
Parameters have great impact on the performance of an optimization algorithm. This paper concerns parameter tuning for metaheuristics which are stochastic optimization algorithms. A novel, fast, and very simple population-based metaheuristic namely Human Habitation Behavior-Based optimization (HHBO)...
Uloženo v:
| Vydáno v: | 2022 5th International Conference on Contemporary Computing and Informatics (IC3I) s. 921 - 924 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
14.12.2022
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Parameters have great impact on the performance of an optimization algorithm. This paper concerns parameter tuning for metaheuristics which are stochastic optimization algorithms. A novel, fast, and very simple population-based metaheuristic namely Human Habitation Behavior-Based optimization (HHBO) is proposed in order to tune parameters of the metaheuristics used for the weight and bias optimization problem in feed-forward neural networks. The proposed algorithm is compared with other state-of-art algorithms, and results and analysis are presented. The results show the merits of HHBO for parameter tuning in comparison of other state-of-art algorithms. |
|---|---|
| DOI: | 10.1109/IC3I56241.2022.10072699 |