Enhancement of CURE algorithm using Map-Reduce Technique with Parallelism
The extraction of useful information from huge databases is one of the key areas of data mining and is open for research. Clustering integrates the data with higher similarity into the same group, enhancing the extraction process. Clustering Using Representatives (CURE) is an efficient clustering al...
Uložené v:
| Vydané v: | 2023 International Conference on Data Science, Agents & Artificial Intelligence (ICDSAAI) s. 1 - 4 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
21.12.2023
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The extraction of useful information from huge databases is one of the key areas of data mining and is open for research. Clustering integrates the data with higher similarity into the same group, enhancing the extraction process. Clustering Using Representatives (CURE) is an efficient clustering algorithm that handles voluminous data. However, CURE uses sampling, which encounters scalability and accuracy issues while processing huge databases. This limitation can be repressed by using the Map-reduce technique in CURE instead of sampling. The clustering performance can be further enhanced by using parallelism integrated into the CURE algorithm to reduce processing time and enhance efficiency. |
|---|---|
| DOI: | 10.1109/ICDSAAI59313.2023.10452533 |