Finding Hamiltonian Cycles with Graph Neural Networks
We train a small message-passing graph neural network to predict Hamiltonian cycles on Erdos-Renyl random graphs in a critical regime. It outperforms existing hand-crafted heuristics after about 2.5 hours of training on a single GPU. Our findings encourage an alternative approach to solving computat...
Gespeichert in:
| Veröffentlicht in: | 2023 International Symposium on Image and Signal Processing and Analysis (ISPA) S. 1 - 6 |
|---|---|
| Hauptverfasser: | , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
18.09.2023
|
| Schlagworte: | |
| ISSN: | 1849-2266 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!