A novel adaptive variable forgetting factor RLS algorithm

This paper investigates the variable forgetting factor least squares method and establishes a nonlinear functional relationship between the forgetting factor and the error signal based on the Sigmoid function. The algorithm overcomes the conflict problem of steady-state performance and dynamic perfo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2022 International Conference on Informatics, Networking and Computing (ICINC) s. 228 - 232
Hlavní autoři: Li, Kai, Xiao, Jun, Xie, JinFang, Wu, RuiQi
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.10.2022
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper investigates the variable forgetting factor least squares method and establishes a nonlinear functional relationship between the forgetting factor and the error signal based on the Sigmoid function. The algorithm overcomes the conflict problem of steady-state performance and dynamic performance of the fixed forgetting factor RLS algorithm. The forgetting factor gradually increases during the gradual convergence of the algorithm, which ensures the algorithm's steady-state performance while accelerating the algorithm's tracking speed and convergence speed. At the same time, this paper also analyzes the rules of the parameters α and β and the effects of the parameters α and β on the performance of the RLS algorithm. Finally, computer simulations are conducted, and the results are consistent with the theoretical analysis, confirming that the algorithm outperforms the traditional RLS algorithm.
AbstractList This paper investigates the variable forgetting factor least squares method and establishes a nonlinear functional relationship between the forgetting factor and the error signal based on the Sigmoid function. The algorithm overcomes the conflict problem of steady-state performance and dynamic performance of the fixed forgetting factor RLS algorithm. The forgetting factor gradually increases during the gradual convergence of the algorithm, which ensures the algorithm's steady-state performance while accelerating the algorithm's tracking speed and convergence speed. At the same time, this paper also analyzes the rules of the parameters α and β and the effects of the parameters α and β on the performance of the RLS algorithm. Finally, computer simulations are conducted, and the results are consistent with the theoretical analysis, confirming that the algorithm outperforms the traditional RLS algorithm.
Author Li, Kai
Xie, JinFang
Xiao, Jun
Wu, RuiQi
Author_xml – sequence: 1
  givenname: Kai
  surname: Li
  fullname: Li, Kai
  email: leesi@whut.edu.cn
  organization: Wuhan University of Technology,School of Mechanical and Electronic Engineering,Wuhan,China
– sequence: 2
  givenname: Jun
  surname: Xiao
  fullname: Xiao, Jun
  email: 1285997861@qq.com
  organization: Wuhan University of Technology,School of Mechanical and Electronic Engineering,Wuhan,China
– sequence: 3
  givenname: JinFang
  surname: Xie
  fullname: Xie, JinFang
  email: 417312610@QQ.com
  organization: Hubei Institute of Measurement and Testing Technology,Wuhan,China
– sequence: 4
  givenname: RuiQi
  surname: Wu
  fullname: Wu, RuiQi
  email: 928913631@qq.com
  organization: Wuhan University of Technology,School of Mechanical and Electronic Engineering,Wuhan,China
BookMark eNotzM1KxDAUQOEIutBx3kAhL9B6kzRtshyKP4Wi4Izr4aa9qYFOM8RQ8O0VlLP4dueGXS5xIcbuBZRCgH3o2u611QaULiVIWQKAVhdsaxtrlAYFtrZwzeyOL3GlmeOI5xxW4iumgG4m7mOaKOewTNzjkGPi7_2e4zzFFPLn6ZZdeZy_aPvvhn08PR7al6J_e-7aXV8EIWwusKFaNQaVB5QwGu0Hh3VN2jfCKQIcR1d5U0lJiOD8b4JsNVQk9GDcqDbs7u8biOh4TuGE6fsoACwIadUP9chGaQ
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICINC58035.2022.00053
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350309690
EndPage 232
ExternalDocumentID 10090129
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-a7e6378a3f0a20d85fcba66e5f71b3e0addb4f8422eaa0bfbfb1e94c4e15c8bd3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:21:09 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-a7e6378a3f0a20d85fcba66e5f71b3e0addb4f8422eaa0bfbfb1e94c4e15c8bd3
PageCount 5
ParticipantIDs ieee_primary_10090129
PublicationCentury 2000
PublicationDate 2022-Oct.
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-Oct.
PublicationDecade 2020
PublicationTitle 2022 International Conference on Informatics, Networking and Computing (ICINC)
PublicationTitleAbbrev ICINC
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8085402
Snippet This paper investigates the variable forgetting factor least squares method and establishes a nonlinear functional relationship between the forgetting factor...
SourceID ieee
SourceType Publisher
StartPage 228
SubjectTerms Active Noise Control
Adaptive systems
Computer simulation
Convergence
Filtering algorithms
Heuristic algorithms
Informatics
RLS algorithm
Steady-state
variable forgetting factor adaptive filtering algorithm
Title A novel adaptive variable forgetting factor RLS algorithm
URI https://ieeexplore.ieee.org/document/10090129
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwMhECa28eBJjTW-w8HrKsvyPJrGRpOmaXyltwaWQZvU3aZu-_sFtj4uHgwXwoUAYYZvmG8-hC6V0EZ6wTNbUh4BCmTWOsiopt4TB4VIPO6XoRyN1GSixxuyeuLCAEBKPoOr2E1_-a4uVzFUFm440TFw0kEdKUVL1tqwcnKir-_7AQhzRQoecB9NhTij5vEv1ZTkNAa7_5xuD_V-6Hd4_O1Y9tEWVAdI3-CqXsMcG2cW0UbhdYC5kfiEfQprx_xl3Mrn4IfhIzbz1zog_7f3Hnoe3D7177KN7kE2y3PdZEaCKKQyhSeGEqe4L60RAriXuS2ABJNkmVeMUjCGWB9aDpqVDHJeKuuKQ9St6gqOEHZeM8U8FxocU8JqUJrGki_xIeidOEa9uO7poi1tMf1a8skf46doJ25tm812hrrNcgXnaLtcN7OP5UU6kE_PRI6Z
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwMhECVaTfSkxhq_5eB1lWWBhaNpbNq4No1W01sDy6BN2t2mtv39Lmz9uHgwXAgXAoQZ3jBvHkLXUiidOsEjk1PuAQpExliIqKLOEQuJCDzu1yzt9eRwqPprsnrgwgBASD6DG98Nf_m2zJc-VFbdcKJ84GQTbXHGKKnpWmteTkzUbbdVQWEuScIr5EdDKU6vevxLNyW4jfbePyfcR80fAh7uf7uWA7QBxSFSd7goVzDB2uqZt1J4VQFdT33CLgS2fQYzrgV08FP2jPXkrayw__u0iV7a94NWJ1orH0TjOFaLSKcgklTqxBFNiZXc5UYLAdylsUmAVEbJMCcZpaA1Ma5qMSiWM4h5Lo1NjlCjKAs4Rtg6xSRzXCiwTAqjQCrqi774p6Cz4gQ1_bpHs7q4xehryad_jF-hnc7gMRtl3d7DGdr121zntp2jxmK-hAu0na8W44_5ZTicT2vTkeA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+International+Conference+on+Informatics%2C+Networking+and+Computing+%28ICINC%29&rft.atitle=A+novel+adaptive+variable+forgetting+factor+RLS+algorithm&rft.au=Li%2C+Kai&rft.au=Xiao%2C+Jun&rft.au=Xie%2C+JinFang&rft.au=Wu%2C+RuiQi&rft.date=2022-10-01&rft.pub=IEEE&rft.spage=228&rft.epage=232&rft_id=info:doi/10.1109%2FICINC58035.2022.00053&rft.externalDocID=10090129