Mining the Web Data: Intelligent Information Retrieval System for Filtering Spam and Sentiment Analysis

World Wide Web has great impact on all aspects of our day-to-day activities and people retrieve all kinds of information available on the Web. Numerous informal written documents, such as tweets, SMS messages, emails, and reviews, can be found on online shopping platforms. This extremely large colle...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2022 IEEE International Conference for Women in Innovation, Technology & Entrepreneurship (ICWITE) s. 1 - 10
Hlavní autoři: Manek, Asha S, Shenoy, P Deepa
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.12.2022
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract World Wide Web has great impact on all aspects of our day-to-day activities and people retrieve all kinds of information available on the Web. Numerous informal written documents, such as tweets, SMS messages, emails, and reviews, can be found on online shopping platforms. This extremely large collection of text documents has made the text analysis now popular field of study and encompasses a wide range of activities, such as sentiment analysis, opinion mining, spam identification, and harmful link detection. This work identifies three challenging research problems: spam filtering, malicious web page detection and opinion mining services. Three models RePID-OK, ReP-ETD and RePC-SSMSM are proposed to filter spam. Analysis of opinion is important and crucial for both individuals and companies by eliminating malicious reviews for decision making. To handle and help the Web users and consumers in making decisions, two models SentReP and W-LRSVM are proposed for classification of sentiments for medical related drugs and movie review data set. The model DeMalFier and BLRFier are designed for detecting spam from websites to test whether a website is malicious or legitimate.
AbstractList World Wide Web has great impact on all aspects of our day-to-day activities and people retrieve all kinds of information available on the Web. Numerous informal written documents, such as tweets, SMS messages, emails, and reviews, can be found on online shopping platforms. This extremely large collection of text documents has made the text analysis now popular field of study and encompasses a wide range of activities, such as sentiment analysis, opinion mining, spam identification, and harmful link detection. This work identifies three challenging research problems: spam filtering, malicious web page detection and opinion mining services. Three models RePID-OK, ReP-ETD and RePC-SSMSM are proposed to filter spam. Analysis of opinion is important and crucial for both individuals and companies by eliminating malicious reviews for decision making. To handle and help the Web users and consumers in making decisions, two models SentReP and W-LRSVM are proposed for classification of sentiments for medical related drugs and movie review data set. The model DeMalFier and BLRFier are designed for detecting spam from websites to test whether a website is malicious or legitimate.
Author Manek, Asha S
Shenoy, P Deepa
Author_xml – sequence: 1
  givenname: Asha S
  surname: Manek
  fullname: Manek, Asha S
  email: ashasudhir2004@gmail.com
  organization: Global Academy of Technology,Department of AI & ML,Bangalore,India
– sequence: 2
  givenname: P Deepa
  surname: Shenoy
  fullname: Shenoy, P Deepa
  email: shenoypd1@gmail.com
  organization: UVCE, Bangalore University,Department of CSE,Bangalore,India
BookMark eNo1j9FKwzAYhSPohZu-gRfxAVqTP0mTejfqNgsTwU52OdL1bw206WiD0Le3Q706Bw7fB2dBrn3vkZBHzmLOWfqUZ4d8v1aaKYiBAcSccZ0A11dkwZNEyUSmLL0lzZvzzjc0fCE9YElfbLDPNPcB29Y16MPc637obHC9px8YBofftqXFNAbs6DzRjWsDDhdJcbYdtb6ixQy67kKvvG2n0Y135Ka27Yj3f7kkn5v1PnuNdu_bPFvtIsd5GiKdKqMrZYQCJWUFaEoFNQiVlNwooSo4SQ2VsGZeQEhtJApmWckqqOWJiSV5-PU6RDyeB9fZYTr-nxc_09hU6Q
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICWITE57052.2022.10176217
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1665464909
9781665464901
EndPage 10
ExternalDocumentID 10176217
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-79587d58352544d2e8b52f2356b18535d2c472d3a8e8b234784e30a0b0d2f4c03
IEDL.DBID RIE
IngestDate Thu Jan 18 11:14:50 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-79587d58352544d2e8b52f2356b18535d2c472d3a8e8b234784e30a0b0d2f4c03
PageCount 10
ParticipantIDs ieee_primary_10176217
PublicationCentury 2000
PublicationDate 2022-Dec.-1
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-Dec.-1
  day: 01
PublicationDecade 2020
PublicationTitle 2022 IEEE International Conference for Women in Innovation, Technology & Entrepreneurship (ICWITE)
PublicationTitleAbbrev ICWITE
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8146527
Snippet World Wide Web has great impact on all aspects of our day-to-day activities and people retrieve all kinds of information available on the Web. Numerous...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms classification
Drugs
Entrepreneurship
filter
Information filters
malicious
Motion pictures
Sentiment analysis
spam detection
Text analysis
Web pages
Title Mining the Web Data: Intelligent Information Retrieval System for Filtering Spam and Sentiment Analysis
URI https://ieeexplore.ieee.org/document/10176217
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BhRATIIp4y0isbh0_4oS1UNGBqqKgdqv8CupAWpWU34_tpEUMDGx-KY7Oju4c3_d9AHeaFUxyVeDMMIK9v9ZYU60wUVzaQmh_6tJRbEIOh9l0mo8asHrEwjjnYvKZ64RivMu3C7MOv8q6YfukPobehV0p0xqstQ-3DW9md9Cb-M9dSCICworSzmb8L-WU6Dj6h_-c8gjaPxA8NNo6l2PYceUJvD9HOQfkgzY0cRo9qErdo8GWVbNCDbooWBu9RLEsv5NQTUuOfBfqz8P1eHjIeKk-kCotGoeEofAaaMNQ0oa3_uNr7wk3Sgl4niR5hWUuMmlFiKYE55a6TAtaUCZSHfyxsNRwSS1Tme-hjMuMO0YU0cTSghvCTqFVLkp3Bii3WiXOplqYlGuaasN4wJA4lxBfFefQDlaaLWsyjNnGQBd_tF_CQViLOgPkClrVau2uYc98VfPP1U1cwm-oVZ52
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5RNOpJjRh_WxOvw64_1s0rSiACIYKBG2nXznBwEBz-_bbdwHjw4G1d0655bfPe2vd9H8C9ohkVTGZBnFIcWH-tAkWUDLBkQmdc2b8u5cUmRL8fTybJoAKreyyMMcYnn5mGe_R3-XqertxR2YNbPpGNobdhhzNGcAnX2oO7ijnzodMc2w3PBeYOY0VIY93il3aKdx2tw39-9AjqPyA8NNi4l2PYMvkJvPe8oAOyYRsaG4WeZCEfUWfDq1mgCl_k7I1evVyWXUuoJCZHtgq1Zu6C3HUyXMgPJHONhi5lyA0DrTlK6vDWeh4120GllRDMwjApApHwWGju4ilrGk1MrDjJCOWRch6Za5IyQTSVsa0hlImYGYolVliTjKWYnkItn-fmDFCilQyNjhRPI6ZIpFLKHIrEmBDbIj-HurPSdFHSYUzXBrr44_0t7LdHve602-m_XMKBm5cyH-QKasVyZa5hN_0qZp_LGz-d3xWdob0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+International+Conference+for+Women+in+Innovation%2C+Technology+%26+Entrepreneurship+%28ICWITE%29&rft.atitle=Mining+the+Web+Data%3A+Intelligent+Information+Retrieval+System+for+Filtering+Spam+and+Sentiment+Analysis&rft.au=Manek%2C+Asha+S&rft.au=Shenoy%2C+P+Deepa&rft.date=2022-12-01&rft.pub=IEEE&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FICWITE57052.2022.10176217&rft.externalDocID=10176217