Accelerating the LZ-complexity algorithm
The Lempel Ziv complexity of a string has recently been used in pattern recognition and classification as part of a string distance function. Its main advantage is that it can measure dissimilarity between a pair of strings of different lengths. This is very useful for machine learning on unstructur...
Uložené v:
| Vydané v: | Proceedings - International Conference on Parallel and Distributed Systems s. 200 - 207 |
|---|---|
| Hlavní autori: | , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
17.12.2023
|
| Predmet: | |
| ISSN: | 2690-5965 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The Lempel Ziv complexity of a string has recently been used in pattern recognition and classification as part of a string distance function. Its main advantage is that it can measure dissimilarity between a pair of strings of different lengths. This is very useful for machine learning on unstructured data since such data is not restricted to a fixed input dimensionality. The standard computation of LZ-complexity is inherently serial and is not suitable for processing large unstructured data. Hence, we propose a parallel algorithm that computes the LZ-complexity of strings whose length is limited only by the amount of memory, typically in the tens of gigabytes. The algorithm is implemented in CUDA on a GPU. Its speed-up factor is approximately n 2/3 for strings of length n, for at least up to n = 2Mb. For instance, on 2Mb strings, the speed-up is 150. We compare the execution times of kernel variants with shared and global memory. The more efficient variant obtains approximately 90% GPU utilization. |
|---|---|
| ISSN: | 2690-5965 |
| DOI: | 10.1109/ICPADS60453.2023.00038 |