Transfer Kernel Sparse Coding Based on Dynamic Distribution Alignment for Image Representation
Sparse coding based domain adaptation methods aim to learn a robust transfer classifier by utilizing the knowledge from source domain and the learned new representation of both domains. Most existing works have achieved remarkable results in solving linear domain shift problems, but have poor perfor...
Uložené v:
| Vydané v: | 2024 4th International Conference on Consumer Electronics and Computer Engineering (ICCECE) s. 230 - 234 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
12.01.2024
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Sparse coding based domain adaptation methods aim to learn a robust transfer classifier by utilizing the knowledge from source domain and the learned new representation of both domains. Most existing works have achieved remarkable results in solving linear domain shift problems, but have poor performance in nonlinear domain shift problems. In this paper, we propose a Transfer kernel sparse coding based on dynamic distribution alignment (TKSC-DDA) approach for cross-domain visual recognition, which incorporates dynamic distributed alignment into kernel sparse coding to learn discriminative and robust sparse representations. Extensive experiment on visual transfer learning tasks demonstrate that our proposed method can significantly out-perform serval state-of-the-art approaches. |
|---|---|
| AbstractList | Sparse coding based domain adaptation methods aim to learn a robust transfer classifier by utilizing the knowledge from source domain and the learned new representation of both domains. Most existing works have achieved remarkable results in solving linear domain shift problems, but have poor performance in nonlinear domain shift problems. In this paper, we propose a Transfer kernel sparse coding based on dynamic distribution alignment (TKSC-DDA) approach for cross-domain visual recognition, which incorporates dynamic distributed alignment into kernel sparse coding to learn discriminative and robust sparse representations. Extensive experiment on visual transfer learning tasks demonstrate that our proposed method can significantly out-perform serval state-of-the-art approaches. |
| Author | Chen, Guangyong Gan, Min Huang, Wei |
| Author_xml | – sequence: 1 givenname: Wei surname: Huang fullname: Huang, Wei organization: Fuzhou University,Department of Computer and Big Data,Fuzhou,China – sequence: 2 givenname: Min surname: Gan fullname: Gan, Min email: aganmin@aliyun.com organization: Fuzhou University,Department of Computer and Big Data,Fuzhou,China – sequence: 3 givenname: Guangyong surname: Chen fullname: Chen, Guangyong organization: Fuzhou University,Department of Computer and Big Data,Fuzhou,China |
| BookMark | eNo1j81KxDAURiPoQsd5AxfxAVrz1zZZjp06FgcEHbcOt81tCbRpSepi3t4RdXXgcPjguyGXfvJIyD1nKefMPNRlWZVVziUvUsGESjnLmOIZuyBrUxgtMya1Yrm4Jp-HAD52GOgLBo8DfZ8hRKTlZJ3v6SNEtHTydHvyMLqWbl1cgmu-FneWm8H1fkS_0G4KtB6hR_qGc8B4dvCT3JKrDoaI6z-uyMdTdSifk_3rri43-8RxbpYk01mhwBptURopCt1o1ua8kaCtQZsJBQp1U3DLAcDqxnRGtoKByttWayFX5O531yHicQ5uhHA6_t-W32ubU5Q |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICCECE61317.2024.10504150 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798350384062 |
| EndPage | 234 |
| ExternalDocumentID | 10504150 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i119t-58574ad98de393278b80c61b3a8d9ed524a4e8b71d1aaad8b9f93c20a46cc8823 |
| IEDL.DBID | RIE |
| IngestDate | Wed May 01 11:58:51 EDT 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i119t-58574ad98de393278b80c61b3a8d9ed524a4e8b71d1aaad8b9f93c20a46cc8823 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_10504150 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Jan.-12 |
| PublicationDateYYYYMMDD | 2024-01-12 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-Jan.-12 day: 12 |
| PublicationDecade | 2020 |
| PublicationTitle | 2024 4th International Conference on Consumer Electronics and Computer Engineering (ICCECE) |
| PublicationTitleAbbrev | ICCECE |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8568825 |
| Snippet | Sparse coding based domain adaptation methods aim to learn a robust transfer classifier by utilizing the knowledge from source domain and the learned new... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 230 |
| SubjectTerms | distribution alignment domain adaptation Encoding Feature extraction Image coding Image representation Sparse approximation sparse coding Transfer learning Visualization |
| Title | Transfer Kernel Sparse Coding Based on Dynamic Distribution Alignment for Image Representation |
| URI | https://ieeexplore.ieee.org/document/10504150 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFA1aRFypWPFNBLdTm8c0yVKnFYtQig_oypLJvSOFOlNq6_ebpFPFhQt3IQkEEpJzT5JzDyFXWEABytNUp5knKMpColEG11REJwrkIrXRbEINBno0MsNarB61MIgYP59hKxTjWz5UbhmuyvwOT4Oi3DP0TaU6K7HWNrms82Ze97Osl_U8PjHliR-XrXX_X84pETjudv855B5p_kjw6PAbXPbJBpYH5DUii2-mDzgvcUqfZp6XIs2q0IneekQCWpW0u7KZp92QFbc2tKI308lbfPqnPk6l_Xd_kNDH-A-2lh-VTfJy13vO7pPaICGZMGYWiQ_1lbRgNKDwcZjSuW67DsuF1WAQUi6tRJ0rBsxaCzo3hRGOt63sOOdDa3FIGmVV4hGhAnIOfjOnznIJosghNW0wCrlj3Eo4Js0wOePZKgfGeD0vJ3_Un5KdsAThsoLxM9JYzJd4Trbc52LyMb-IK_cFigyc3w |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dT8IwFG2MGvVJjRi_rYmvQ_ox1j3qgEBAQhQTniRd750hwY0g-Ptty9D44INvS9emSZv23NP23EPILWaQQWRpqlHMEpRIQ6BQOtdURCMy5CLU3mwi6vfVaBQPSrG618Igon98hlX36e_yoTBLd1RmV3joFOWWoW8566xSrrVDbsrMmXedJGkmTYtQLLLUj8vqusUv7xQPHa39f3Z6QCo_Ijw6-IaXQ7KB-RF59dhif9MuznOc0ueZZaZIk8JVog8Wk4AWOW2sjOZpw-XFLS2t6P108uYv_6mNVGnn3W4l9Mm_hC0FSHmFvLSaw6QdlBYJwYSxeBHYYD-SGmIFKGwkFqlU1UydpUIriBFCLrVElUYMmNYaVBpnsTC8pmXdGBtci2OymRc5nhAqIOVgl3NoNJcgshTCuAZxhNwwriWckoobnPFslQVjvB6Xsz_Kr8lue_jYG_c6_e452XPT4Y4uGL8gm4v5Ei_JtvlcTD7mV34WvwDk1aAo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+4th+International+Conference+on+Consumer+Electronics+and+Computer+Engineering+%28ICCECE%29&rft.atitle=Transfer+Kernel+Sparse+Coding+Based+on+Dynamic+Distribution+Alignment+for+Image+Representation&rft.au=Huang%2C+Wei&rft.au=Gan%2C+Min&rft.au=Chen%2C+Guangyong&rft.date=2024-01-12&rft.pub=IEEE&rft.spage=230&rft.epage=234&rft_id=info:doi/10.1109%2FICCECE61317.2024.10504150&rft.externalDocID=10504150 |