Transfer Kernel Sparse Coding Based on Dynamic Distribution Alignment for Image Representation

Sparse coding based domain adaptation methods aim to learn a robust transfer classifier by utilizing the knowledge from source domain and the learned new representation of both domains. Most existing works have achieved remarkable results in solving linear domain shift problems, but have poor perfor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2024 4th International Conference on Consumer Electronics and Computer Engineering (ICCECE) S. 230 - 234
Hauptverfasser: Huang, Wei, Gan, Min, Chen, Guangyong
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 12.01.2024
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sparse coding based domain adaptation methods aim to learn a robust transfer classifier by utilizing the knowledge from source domain and the learned new representation of both domains. Most existing works have achieved remarkable results in solving linear domain shift problems, but have poor performance in nonlinear domain shift problems. In this paper, we propose a Transfer kernel sparse coding based on dynamic distribution alignment (TKSC-DDA) approach for cross-domain visual recognition, which incorporates dynamic distributed alignment into kernel sparse coding to learn discriminative and robust sparse representations. Extensive experiment on visual transfer learning tasks demonstrate that our proposed method can significantly out-perform serval state-of-the-art approaches.
DOI:10.1109/ICCECE61317.2024.10504150