Noise Benefits in Complex-Valued Neural Networks
In this paper, we investigate the effectiveness of noise that is injected into the output of complex-valued neural networks. We first establish the equivalence between the complex backpropagation algorithm and the complex expectation maximization algorithm from the perspective of maximum probability...
Uložené v:
| Vydané v: | 2023 8th International Conference on Image, Vision and Computing (ICIVC) s. 853 - 858 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
27.07.2023
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper, we investigate the effectiveness of noise that is injected into the output of complex-valued neural networks. We first establish the equivalence between the complex backpropagation algorithm and the complex expectation maximization algorithm from the perspective of maximum probability likelihood estimation, then based on this equivalence we establish the separation hyperplane to distinguish the beneficial noise from the harmful noise in the sense of speeding up the training. The theoretical findings are validated by numerical simulations on the MNIST and Fashion MNIST data sets. |
|---|---|
| DOI: | 10.1109/ICIVC58118.2023.10269993 |