Noise Benefits in Complex-Valued Neural Networks
In this paper, we investigate the effectiveness of noise that is injected into the output of complex-valued neural networks. We first establish the equivalence between the complex backpropagation algorithm and the complex expectation maximization algorithm from the perspective of maximum probability...
Uloženo v:
| Vydáno v: | 2023 8th International Conference on Image, Vision and Computing (ICIVC) s. 853 - 858 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
27.07.2023
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we investigate the effectiveness of noise that is injected into the output of complex-valued neural networks. We first establish the equivalence between the complex backpropagation algorithm and the complex expectation maximization algorithm from the perspective of maximum probability likelihood estimation, then based on this equivalence we establish the separation hyperplane to distinguish the beneficial noise from the harmful noise in the sense of speeding up the training. The theoretical findings are validated by numerical simulations on the MNIST and Fashion MNIST data sets. |
|---|---|
| DOI: | 10.1109/ICIVC58118.2023.10269993 |