Noise Benefits in Complex-Valued Neural Networks

In this paper, we investigate the effectiveness of noise that is injected into the output of complex-valued neural networks. We first establish the equivalence between the complex backpropagation algorithm and the complex expectation maximization algorithm from the perspective of maximum probability...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2023 8th International Conference on Image, Vision and Computing (ICIVC) s. 853 - 858
Hlavní autoři: Ren, Lei, Liu, Chunyang, Zhang, Ying
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 27.07.2023
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we investigate the effectiveness of noise that is injected into the output of complex-valued neural networks. We first establish the equivalence between the complex backpropagation algorithm and the complex expectation maximization algorithm from the perspective of maximum probability likelihood estimation, then based on this equivalence we establish the separation hyperplane to distinguish the beneficial noise from the harmful noise in the sense of speeding up the training. The theoretical findings are validated by numerical simulations on the MNIST and Fashion MNIST data sets.
DOI:10.1109/ICIVC58118.2023.10269993