Graph Signal Processing For Neurogimaging to Reveal Dynamics of Brain Structure-Function Coupling

Linking time-varying functional brain activity with underlying neural architecture remains a complex and challenging endeavor. A recent framework for this undertaking is graph signal processing (GSP), where functional activity patterns are treated as signals living on a graph that is characterized b...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) s. 1 - 5
Hlavní autoři: Preti, Maria Giulia, W. Bolton, Thomas A., Griffa, Alessandra, De Ville, Dimitri Van
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 04.06.2023
Témata:
ISSN:2379-190X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Linking time-varying functional brain activity with underlying neural architecture remains a complex and challenging endeavor. A recent framework for this undertaking is graph signal processing (GSP), where functional activity patterns are treated as signals living on a graph that is characterized by structural connectivity. Then graph spectral filtering can be used to obtain the parts of functional activity that are more or less smooth on the graph; i.e., more coupled or decoupled from brain structure, respectively. Given the time-varying behavior of functional magnetic resonance imaging (fMRI) networks, structure- function coupling may also change over time. Here, we leverage the GSP framework in a sliding-window setting to investigate the dynamics of brain structure-function coupling during resting-state at the node- and edge-wise levels. We conclude that dynamics are captured by both node- and edge-wise metrics of structure-function coupling and we identify principal patterns of dynamic functional connectivity respectively coupled and decoupled from structure.
AbstractList Linking time-varying functional brain activity with underlying neural architecture remains a complex and challenging endeavor. A recent framework for this undertaking is graph signal processing (GSP), where functional activity patterns are treated as signals living on a graph that is characterized by structural connectivity. Then graph spectral filtering can be used to obtain the parts of functional activity that are more or less smooth on the graph; i.e., more coupled or decoupled from brain structure, respectively. Given the time-varying behavior of functional magnetic resonance imaging (fMRI) networks, structure- function coupling may also change over time. Here, we leverage the GSP framework in a sliding-window setting to investigate the dynamics of brain structure-function coupling during resting-state at the node- and edge-wise levels. We conclude that dynamics are captured by both node- and edge-wise metrics of structure-function coupling and we identify principal patterns of dynamic functional connectivity respectively coupled and decoupled from structure.
Author Preti, Maria Giulia
W. Bolton, Thomas A.
De Ville, Dimitri Van
Griffa, Alessandra
Author_xml – sequence: 1
  givenname: Maria Giulia
  surname: Preti
  fullname: Preti, Maria Giulia
  organization: CIBM Center for Biomedical Imaging,Switzerland
– sequence: 2
  givenname: Thomas A.
  surname: W. Bolton
  fullname: W. Bolton, Thomas A.
  organization: Centre Hospitalier Universitaire Vaudois,Connectomics Laboratory,Department of Radiology,Lausanne,Switzerland
– sequence: 3
  givenname: Alessandra
  surname: Griffa
  fullname: Griffa, Alessandra
  organization: Ecole Polytechnique Fédérale de Lausanne,Neuro-X Institute,Geneva,Switzerland
– sequence: 4
  givenname: Dimitri Van
  surname: De Ville
  fullname: De Ville, Dimitri Van
  organization: CIBM Center for Biomedical Imaging,Switzerland
BookMark eNo1kM1KAzEcxKMo2FbfwEN8gK3_fG2So1ZbhaLFVfBW0myyRtqkZHeFvr0r6mlgmBl-zBidxBQdQlcEpoSAvn6c3VTVimsm5JQCZVMCoAVV4giNiaSKlIxKeYxGlEldEA3vZ2jctp8AoCRXI2QW2ew_cBWaaLZ4lZN1bRtig-cp4yfX59SEnWl-nC7hF_flhtjdIZpdsC1OHt9mEyKuutzbrs-umPfRdiFFPEv9fjv0ztGpN9vWXfzpBL3N719nD8XyeTHgL4tAiO4KykvBaqGItcxyJ70ygivPHQPHa3ACDGjla1saC3LDSqiJ9p5sLKEaBGUTdPm7G5xz630esPNh_f8H-wbEeljY
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICASSP49357.2023.10095285
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEL
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1728163277
9781728163277
EISSN 2379-190X
EndPage 5
ExternalDocumentID 10095285
Genre orig-research
GroupedDBID 23M
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i119t-24653d581cc3c4e7f8a548f4e30e4d0e50a098fdc6ac07b360d19ff1bc1290523
IEDL.DBID RIE
IngestDate Wed Aug 27 02:23:36 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-24653d581cc3c4e7f8a548f4e30e4d0e50a098fdc6ac07b360d19ff1bc1290523
PageCount 5
ParticipantIDs ieee_primary_10095285
PublicationCentury 2000
PublicationDate 2023-June-4
PublicationDateYYYYMMDD 2023-06-04
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-June-4
  day: 04
PublicationDecade 2020
PublicationTitle Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998)
PublicationTitleAbbrev ICASSP
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008748
Score 2.2211752
Snippet Linking time-varying functional brain activity with underlying neural architecture remains a complex and challenging endeavor. A recent framework for this...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Brain
Couplings
dynamic functional connectivity
eigenconnectivities
Filtering
fMRI
Functional magnetic resonance imaging
Graph signal processing
Image edge detection
Measurement
Signal processing
structure-function coupling
Title Graph Signal Processing For Neurogimaging to Reveal Dynamics of Brain Structure-Function Coupling
URI https://ieeexplore.ieee.org/document/10095285
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8MgFCduMUYvfs34HUy8dpaWFjjqtGpilsVqsttC4bH0YGv29fcLrJt68OCNQElTHvAe9P1-P4SupQANJCYBmBACyiMRcOWyLKx7L4SdEKTwqiUvrN_nw6EYNGB1j4UBAJ98Bl1X9P_yda3m7qrMrnAbEEQ8aaEWY-kSrLXedjmjfAtdNSSaN8-92zwfUBEnrOskwrurzr9kVLwXyXb_-f491PnG4-HB2tPsow2oDtDODyrBQyQfHfM0zsuxnRm4Sf-3LTirJ9gzcIzLD69IhGc1foWFDRDx_VKOfoprg--cVgTOPZ3sfAJBZh2eMxru1XOH2h130Hv28NZ7Chr5hKAkRMyCyFGn6YQTpWJFgRku7fHEUIhDoDqEJJSh4EarVKqQFXEaaiKMIYVyd1P2gHqE2lVdwTHCyj6cysiklEuqCy01BWEjAyYVSbkSJ6jjRmv0uWTIGK0G6vSP-jO07WziU67oOWrbb4MLtKkWs3I6ufR2_QIU3KSk
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT8MgFCY6jZcXbzPexcTXTmhpC486rVucy-JmsreFwunSB1ez2-8XWDf1wQffCJSk5QDnQM_3fQjdSgEaaEA9yAh4jPvC48pmWRj3ngozIWjqVEtacbvN-33RKcHqDgsDAC75DGq26P7l60LN7FWZWeEmIPB5uI42QsZ8soBrrTZeHjO-hW5KGs27Zv2-2-0wEYRxzYqE15bdfwmpOD-S7P3zDfZR9RuRhzsrX3OA1mB0iHZ_kAkeIflsuadxNx-auYFLAIBpwUkxxo6DY5h_OE0iPC3wG8xNiIgfF4L0E1xk-MGqReCuI5SdjcFLjMuzZsP1YmZxu8Mqek-eevWGVwooeDmlYur5ljxNh5wqFSgGccalOaBkDAICTBMIiSSCZ1pFUpE4DSKiqcgymip7O2WOqMeoMipGcIKwMg9H0s8ixiXTqZaagTCxQSwVjbgSp6hqR2vwueDIGCwH6uyP-mu03ei9tgatZvvlHO1Y-7gELHaBKuY74RJtqvk0n4yvnI2_ANJOp-s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%281998%29&rft.atitle=Graph+Signal+Processing+For+Neurogimaging+to+Reveal+Dynamics+of+Brain+Structure-Function+Coupling&rft.au=Preti%2C+Maria+Giulia&rft.au=W.+Bolton%2C+Thomas+A.&rft.au=Griffa%2C+Alessandra&rft.au=De+Ville%2C+Dimitri+Van&rft.date=2023-06-04&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FICASSP49357.2023.10095285&rft.externalDocID=10095285