Graph Signal Processing For Neurogimaging to Reveal Dynamics of Brain Structure-Function Coupling
Linking time-varying functional brain activity with underlying neural architecture remains a complex and challenging endeavor. A recent framework for this undertaking is graph signal processing (GSP), where functional activity patterns are treated as signals living on a graph that is characterized b...
Uloženo v:
| Vydáno v: | Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) s. 1 - 5 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
04.06.2023
|
| Témata: | |
| ISSN: | 2379-190X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Linking time-varying functional brain activity with underlying neural architecture remains a complex and challenging endeavor. A recent framework for this undertaking is graph signal processing (GSP), where functional activity patterns are treated as signals living on a graph that is characterized by structural connectivity. Then graph spectral filtering can be used to obtain the parts of functional activity that are more or less smooth on the graph; i.e., more coupled or decoupled from brain structure, respectively. Given the time-varying behavior of functional magnetic resonance imaging (fMRI) networks, structure- function coupling may also change over time. Here, we leverage the GSP framework in a sliding-window setting to investigate the dynamics of brain structure-function coupling during resting-state at the node- and edge-wise levels. We conclude that dynamics are captured by both node- and edge-wise metrics of structure-function coupling and we identify principal patterns of dynamic functional connectivity respectively coupled and decoupled from structure. |
|---|---|
| ISSN: | 2379-190X |
| DOI: | 10.1109/ICASSP49357.2023.10095285 |