Data-Driven OTFS Channel Estimation Based on Gated Recurrent Convolutional Autoencoder

Considering the traffic environment with highmoving vehicles, orthogonal time frequency space (OTFS) has become an emerging technology to handle the rapid timevarying channels via vehicular communications. Due to sparse representation of the delay-Doppler (DD) domain, the related channel information...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International Symposium on Communications and Information Technologies (Online) s. 7 - 12
Hlavní autori: Chen, Junshen, Yuan, Qihao, Zhang, Shiyao, Liu, Chang
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 16.10.2023
Predmet:
ISSN:2643-6175
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Considering the traffic environment with highmoving vehicles, orthogonal time frequency space (OTFS) has become an emerging technology to handle the rapid timevarying channels via vehicular communications. Due to sparse representation of the delay-Doppler (DD) domain, the related channel information can be estimated by means of the embedded pilot technique. However, the uncertainties of unknown and burst noise can incur system performance degradation issues. To tackle this problem, in this paper, we propose a novel gated recurrent convolutional autoencoder (GRCAE) model to denoise the complex noise for channel estimation in OTFS systems. Specifically, the proposed model can distinguish and retain the significant features of the signal during the denoising process through the gated recurrent unit (GRU) network. Meanwhile, the convolutional autoencoder can better capture the local spatial features of the signal and reconstruct them to obtain a denoised signal. The parallel procedure further improves the denoising accuracy and robustness. Our simulation results demonstrate that the proposed GRCAEbased approach present satisfactory performance in various noise scenarios.
AbstractList Considering the traffic environment with highmoving vehicles, orthogonal time frequency space (OTFS) has become an emerging technology to handle the rapid timevarying channels via vehicular communications. Due to sparse representation of the delay-Doppler (DD) domain, the related channel information can be estimated by means of the embedded pilot technique. However, the uncertainties of unknown and burst noise can incur system performance degradation issues. To tackle this problem, in this paper, we propose a novel gated recurrent convolutional autoencoder (GRCAE) model to denoise the complex noise for channel estimation in OTFS systems. Specifically, the proposed model can distinguish and retain the significant features of the signal during the denoising process through the gated recurrent unit (GRU) network. Meanwhile, the convolutional autoencoder can better capture the local spatial features of the signal and reconstruct them to obtain a denoised signal. The parallel procedure further improves the denoising accuracy and robustness. Our simulation results demonstrate that the proposed GRCAEbased approach present satisfactory performance in various noise scenarios.
Author Chen, Junshen
Zhang, Shiyao
Yuan, Qihao
Liu, Chang
Author_xml – sequence: 1
  givenname: Junshen
  surname: Chen
  fullname: Chen, Junshen
  email: 2021280156@email.szu.edu.cn
  organization: Shenzhen University,Shenzhen,China
– sequence: 2
  givenname: Qihao
  surname: Yuan
  fullname: Yuan, Qihao
  email: 2021190035@email.szu.edu.cn
  organization: Shenzhen University,Shenzhen,China
– sequence: 3
  givenname: Shiyao
  surname: Zhang
  fullname: Zhang, Shiyao
  email: zhangsy@sustech.edu.cn
  organization: Southern University of Science and Technology,Shenzhen,China
– sequence: 4
  givenname: Chang
  surname: Liu
  fullname: Liu, Chang
  email: changwcom.liu@polyu.edu.hk
  organization: The Hong Kong Polytechnic University,Hong Kong SAR,China
BookMark eNo1kM1Kw0AUhUdRsNa-gYt5gcS585tZ1vTHQqFgo9tyk9xgJE4kmRZ8eyvq6nyLw8fh3LKr0AdijINIAYR_2OzzTWGc9CqVQqoUhHJWeLhgM-8ysNZo4xTYSzaRVqvEgjM3bDaO70IIBZn3ICfsdYERk8XQnijwXbHa8_wNQ6COL8fYfmBs-8AfcaSan2GN8QzPVB2HgULkeR9OfXf8KWHH58fYU6j6moY7dt1gN9LsL6fsZbUs8qdku1tv8vk2aQF8TCQIzDKHVe0MEDbOZGDAYlZWVGtETSWWGhVaYUoDlW5ANogARpIW3qspu__1tkR0-BzOi4evw_8V6hsrkVWV
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISCIT57293.2023.10376091
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781665457316
1665457317
EISSN 2643-6175
EndPage 12
ExternalDocumentID 10376091
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i119t-210a887acd751eaf7581516a8bced4aa4ebab4a3a605b51c4f12faa1152e40993
IEDL.DBID RIE
IngestDate Wed Aug 27 02:29:30 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-210a887acd751eaf7581516a8bced4aa4ebab4a3a605b51c4f12faa1152e40993
PageCount 6
ParticipantIDs ieee_primary_10376091
PublicationCentury 2000
PublicationDate 2023-Oct.-16
PublicationDateYYYYMMDD 2023-10-16
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-Oct.-16
  day: 16
PublicationDecade 2020
PublicationTitle International Symposium on Communications and Information Technologies (Online)
PublicationTitleAbbrev ISCIT
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003189912
Score 1.8478944
Snippet Considering the traffic environment with highmoving vehicles, orthogonal time frequency space (OTFS) has become an emerging technology to handle the rapid...
SourceID ieee
SourceType Publisher
StartPage 7
SubjectTerms Channel estimation
Convolution
gated recurrent convolutional autoencoder
Noise reduction
orthogonal time frequency space
Simulation
System performance
Time-frequency analysis
Uncertainty
Title Data-Driven OTFS Channel Estimation Based on Gated Recurrent Convolutional Autoencoder
URI https://ieeexplore.ieee.org/document/10376091
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYoCFVxFveWBNGyepk4zQh-hSKlpQt-psX6RKVYpC2t_PXfoABgY2K1Lk6Gzfd9_F350QDxZNZpJQe2EWAREU43upTjKPoDj2ndZZrGzVbCIeDJLJJB1uxOqVFgYRq8tn2OBh9S_fLeySU2VN1rRpn7Xq-3Gs12KtXUKFNifFOrvbOn7a7I_a_XGLosewwU3CG9vXfzVSqXCkd_zPLzgR9W9FnhzusOZU7GF-Jo5-FBM8F-8dKMHrFOy-5Mu4N5KsHMhxLrt0jNcKRflEoOUkDThr5uQrZ9u5PpOkeVabXQhz-bgsF1zh0mFRF2-97rj97G26JngzpdLSIw4H5DnAurilEDIiBITqGhJj0UUAERowEYRARMa0lI0yFWQAFBkGSGQvDS9ELV_keMl6blSWQqw0hjCiwBHowAbWgGMrBKm-EnU20fRjXRhjurXO9R_Pb8QhLwS7fqVvRa0slngnDuyqnH0W99VyfgH0C6Av
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4YNVEvvjC-3YPXQpeWbXtUHoGISKQabmT20YSEFFMLv9-ZUlAPHrxtethtZh_fzOx-8zF2r61KVOhJx0t8wABFuU4kw8RBKA5cI2USCF2ITQSDQTgeR8OSrF5wYay1xeMzW6VmcZdv5npBqbIacdqkS1z1HZLOKulam5QKLk_0djbvddyo1hs1e3ED_UevSjLh1XUHv6RUCiTpHP7zH45Y5ZuTx4cbtDlmWzY9YQc_ygmesvcW5OC0MjrA-EvcGXHiDqR2xtu4kVccRf6IsGU4NihvZvgr5dupQhPHcZblOoQZf1jkc6pxaWxWYW-ddtzsOqVugjMVIsodjOIAzw7QJmgICwmGBIjrEkKlrfEBfKtA-eABhjKqIbSfiHoCgL5h3WK4F3lnbDudp_acGN1WaHSyogA8H11HwC1b1woMWaEeyQtWIRNNPlalMSZr61z-8f2O7XXj5_6k3xs8XbF9mhQCAiGv2XaeLewN29XLfPqZ3RZT-wV9TqN4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Symposium+on+Communications+and+Information+Technologies+%28Online%29&rft.atitle=Data-Driven+OTFS+Channel+Estimation+Based+on+Gated+Recurrent+Convolutional+Autoencoder&rft.au=Chen%2C+Junshen&rft.au=Yuan%2C+Qihao&rft.au=Zhang%2C+Shiyao&rft.au=Liu%2C+Chang&rft.date=2023-10-16&rft.pub=IEEE&rft.eissn=2643-6175&rft.spage=7&rft.epage=12&rft_id=info:doi/10.1109%2FISCIT57293.2023.10376091&rft.externalDocID=10376091