Machine Learning Applied to the Operation of Fully Renewable Energy Systems

This work presents a novel learning algorithm for the operation policy of power systems trying to minimize the cost of fulfilling the energy demand. The algorithm improves upon the classical reinforcement learning methods by controlling the sampling variance in the estimation of the future cost spat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2023 IEEE PES GTD International Conference and Exposition (GTD) S. 139 - 143
Hauptverfasser: Chaer, Ruben, Ramirez, Ignacio, Casaravilla, Gonzalo
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.05.2023
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This work presents a novel learning algorithm for the operation policy of power systems trying to minimize the cost of fulfilling the energy demand. The algorithm improves upon the classical reinforcement learning methods by controlling the sampling variance in the estimation of the future cost spatial differences, together with parameter regularization and dynamic exploring techniques. The proposed strategy was applied to a case of what could be the power system of Uruguay by 2050 based strongly in hydro, wind and solar energies, including three lakes, four groups of battery banks, and the basin runoff of the two main Uruguayan rivers. The generation in the year 2022 in Uruguay was 43% hydraulic, 40% wind plus solar, 7% biomass and 10% based on fossil fuels. This composition prints a very relevant stochastic component that makes it difficult to apply machine learning techniques without the kind of algorihms proposed in this work.
AbstractList This work presents a novel learning algorithm for the operation policy of power systems trying to minimize the cost of fulfilling the energy demand. The algorithm improves upon the classical reinforcement learning methods by controlling the sampling variance in the estimation of the future cost spatial differences, together with parameter regularization and dynamic exploring techniques. The proposed strategy was applied to a case of what could be the power system of Uruguay by 2050 based strongly in hydro, wind and solar energies, including three lakes, four groups of battery banks, and the basin runoff of the two main Uruguayan rivers. The generation in the year 2022 in Uruguay was 43% hydraulic, 40% wind plus solar, 7% biomass and 10% based on fossil fuels. This composition prints a very relevant stochastic component that makes it difficult to apply machine learning techniques without the kind of algorihms proposed in this work.
Author Casaravilla, Gonzalo
Ramirez, Ignacio
Chaer, Ruben
Author_xml – sequence: 1
  givenname: Ruben
  surname: Chaer
  fullname: Chaer, Ruben
  email: rchaer@simsee.org
  organization: Universidad de la República and Electricity Market Administration,Facultad de Ingeniería,Montevideo,Uruguay
– sequence: 2
  givenname: Ignacio
  surname: Ramirez
  fullname: Ramirez, Ignacio
  email: nacho@fing.edu.uy
  organization: Universidad de la República,Facultad de Ingeniería,Montevideo,Uruguay
– sequence: 3
  givenname: Gonzalo
  surname: Casaravilla
  fullname: Casaravilla, Gonzalo
  email: gcp@fing.edu.uy
  organization: Universidad de la República,Facultad de Ingeniería,Montevideo,Uruguay
BookMark eNotj91KwzAYQCPohc49gV7kBVq_L2ma5HLM_YiVgfZ-pO2XLdClpa1I396BXhzO3YHzwG5jF4mxJ4QUEezLrnzNrM5NKkDIFACUvGFLqw1qcQWEwnv2_uHqc4jEC3JDDPHEV33fBmr41PHpTPzQ0-Cm0EXeeb79btuZf1KkH1e1xDeRhtPMv-Zxosv4yO68a0da_nvByu2mXO-T4rB7W6-KJCDaKUHKfSOlkB7BaSWcr2xtK2W0dBqUzQCVrBok6VUm1XXBGWO8tbVWTZXLBXv-ywYiOvZDuLhhPiKIHHWeyV9xJEnK
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/GTD49768.2023.00053
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728170251
1728170257
EndPage 143
ExternalDocumentID 10261764
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-1e6fd3323f10a752afb9c9b5873a705940153bd1e3f5435976a888f99c75db63
IEDL.DBID RIE
IngestDate Wed Oct 04 09:12:49 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-1e6fd3323f10a752afb9c9b5873a705940153bd1e3f5435976a888f99c75db63
PageCount 5
ParticipantIDs ieee_primary_10261764
PublicationCentury 2000
PublicationDate 2023-May
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-May
PublicationDecade 2020
PublicationTitle 2023 IEEE PES GTD International Conference and Exposition (GTD)
PublicationTitleAbbrev GTD
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8302352
Snippet This work presents a novel learning algorithm for the operation policy of power systems trying to minimize the cost of fulfilling the energy demand. The...
SourceID ieee
SourceType Publisher
StartPage 139
SubjectTerms Approximate Stochastic Dynamic Programming
Costs
Heuristic algorithms
Lakes
Power system dynamics
Reinforcement learning
Reinforcement Machine Learning
Renewable Energies
Solar energy
Stochastic processes
Title Machine Learning Applied to the Operation of Fully Renewable Energy Systems
URI https://ieeexplore.ieee.org/document/10261764
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwFLRoxcAEiCC-5YHVUMexHc_QggSUCmXoVtnJM-rSVCWl4t_z7ISPhYEt8hLpnpI72-_uEXKZKym8lILl3EuW5dayvKwEqziggJYArq30ox6P8-nUTDqzevTCAEBsPoOr8Bjv8qu6XIejMvzCQ364ynqkp7VqzVpdkhAfmOu74jZDdg0NW2nILR2Eice_ZqZEyhjt_vNleyT5Md_RyTet7JMtWByQh6fY9Ai0y0N9pZ18pE1NUcPR5yW0taS1p2Ff-UFf8De2Cc4oOowGP9qlkyekGA2Lm3vWzUFgc85NwzgoXwmRCs8HVsvUemdK42SuhdUhbwUpXThEF1FH9YMQWNzXemNKLSunxCHpL-oFHBGqvFZKo6hwDlnJC6sUeMiyzGqXGm-PSRKAmC3bpIvZFwYnf6yfkp2AddsAeEb6zWoN52S7fG_mb6uLWJ9P1yKSPA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwFLSgIMEEiCK-8cAaiOOveIaWoqalQhm6VXbyjLo0VUlB_HtsJ3wsDGyRl0j3lNzZfncPoetUcGo5p1FKLI9YqnWUFiWNSgJOQHMA01Q6k-NxOp2qSWtWD14YAAjNZ3DjH8NdflkVa39U5r5wnx8u2Cba4owlcWPXarOESKxuH_J75vjVt2wlPrk09jOPf01NCaTR3_vn6_ZR98d-hyffxHKANmBxiIaj0PYIuE1EfcGtgMR1hZ2Kw09LaKqJK4v9zvIDP7sf2bv3RuFesPjhNp-8i_J-L78bRO0khGhOiKojAsKWlCbUklhLnmhrVKEMTyXV0ieuOFKnxuHrcHf6x0Gg3c7WKlVIXhpBj1BnUS3gGGFhpRDSyQpjHC9ZqoUAC4wxLU2irD5BXQ_EbNlkXcy-MDj9Y_0K7QzyUTbLHsfDM7TrcW_aAc9Rp16t4QJtF2_1_HV1GWr1CaPYlYM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+IEEE+PES+GTD+International+Conference+and+Exposition+%28GTD%29&rft.atitle=Machine+Learning+Applied+to+the+Operation+of+Fully+Renewable+Energy+Systems&rft.au=Chaer%2C+Ruben&rft.au=Ramirez%2C+Ignacio&rft.au=Casaravilla%2C+Gonzalo&rft.date=2023-05-01&rft.pub=IEEE&rft.spage=139&rft.epage=143&rft_id=info:doi/10.1109%2FGTD49768.2023.00053&rft.externalDocID=10261764