Network Intrusion Detection System Using Deep Learning Method with KDD Cup'99 Dataset

This work is a deep sparse autoencoder network intrusion detection system which addresses the issue of interpretability of L2 regularization technique used in other works. The proposed model was trained using a mini-batch gradient descent technique, L1 regularization technique and ReLU activation fu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings (IEEE International Symposium on Embedded Multicore/Manycore SoCs. Online) s. 251 - 255
Hlavní autoři: Tanimu, Jesse Jeremiah, Hamada, Mohamed, Robert, Patience, Mahendran, Anand
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.12.2022
Témata:
ISSN:2771-3075
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This work is a deep sparse autoencoder network intrusion detection system which addresses the issue of interpretability of L2 regularization technique used in other works. The proposed model was trained using a mini-batch gradient descent technique, L1 regularization technique and ReLU activation function to arrive at a better performance. Results based on the KDDCUP'99 dataset show that our approach provides significant performance improvements over other deep sparse autoencoder Network Intrusion Detection Systems.
ISSN:2771-3075
DOI:10.1109/MCSoC57363.2022.00047