A New Relaxative Algorithm for Coupled Riccati Matrix Equations

In this paper, an iterative algorithm for solving coupled algebraic Riccati equations is proposed that has the ad-vantage of fast convergence. Firstly, the importance and related theories of solving the Riccati equation in the control problem of Markovian jumping are introduced, and then mathematica...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Chinese Control Conference s. 227 - 232
Hlavní autoři: Du, Yi-Xiao, Wu, Yu-Yao, Wang, Ping, Sun, Hui-Jie, Liu, Wanquan
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: Technical Committee on Control Theory, Chinese Association of Automation 24.07.2023
Témata:
ISSN:1934-1768
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, an iterative algorithm for solving coupled algebraic Riccati equations is proposed that has the ad-vantage of fast convergence. Firstly, the importance and related theories of solving the Riccati equation in the control problem of Markovian jumping are introduced, and then mathematical induction is used to prove the mono-tonicity and bounded properties of iterative algorithms, and the method of obtaining the initial matrix of iterative algorithms is given. Also, numerical simulation verifies that the convergence speed of the algorithm is faster than some current algorithms.
ISSN:1934-1768
DOI:10.23919/CCC58697.2023.10241102