Multispectral Image Super Resolution with Auto-Encoder Model and Fusion Technique

Obtaining High Resolution(HR) Multispectral Images which are not readily available is one of the more critical objectives in remote sensing applications as these images can be used for various agricultural applications and previously various other methods like pansharpening have been introduced. Thi...

Full description

Saved in:
Bibliographic Details
Published in:2022 7th International Conference on Communication and Electronics Systems (ICCES) pp. 1485 - 1490
Main Authors: Reddy, Kasu Ameesh, Teja, Potti Sri Venkata Surya Pavan, Teja, Grandhi Krishna, Divya, Karanam, Aravinth, J
Format: Conference Proceeding
Language:English
Published: IEEE 22.06.2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Obtaining High Resolution(HR) Multispectral Images which are not readily available is one of the more critical objectives in remote sensing applications as these images can be used for various agricultural applications and previously various other methods like pansharpening have been introduced. This paper proposes a novel convolutional auto-encoder for training the multispectral images obtained from Sentinel -2A Satellite and then pass the degraded multispectral image to obtain the reconstructed Multispectral Image which is spectrally enhanced and then fuse the image obtained from reconstruction with the original degraded image to obtain a spatial HR Multispectral Image. This fusion is done using various state of the art methods like Principal Component Analysis(PCA), Discrete Wavelet Transform Level-l(DWT) and Stationary Wavelet Transform Level-l(SWT) and the performance metrics.
AbstractList Obtaining High Resolution(HR) Multispectral Images which are not readily available is one of the more critical objectives in remote sensing applications as these images can be used for various agricultural applications and previously various other methods like pansharpening have been introduced. This paper proposes a novel convolutional auto-encoder for training the multispectral images obtained from Sentinel -2A Satellite and then pass the degraded multispectral image to obtain the reconstructed Multispectral Image which is spectrally enhanced and then fuse the image obtained from reconstruction with the original degraded image to obtain a spatial HR Multispectral Image. This fusion is done using various state of the art methods like Principal Component Analysis(PCA), Discrete Wavelet Transform Level-l(DWT) and Stationary Wavelet Transform Level-l(SWT) and the performance metrics.
Author Teja, Potti Sri Venkata Surya Pavan
Aravinth, J
Teja, Grandhi Krishna
Divya, Karanam
Reddy, Kasu Ameesh
Author_xml – sequence: 1
  givenname: Kasu Ameesh
  surname: Reddy
  fullname: Reddy, Kasu Ameesh
  email: cb.en.u4ece18504@cb.students.amrita.edu
  organization: Amrita Vishwa Vidyapeetham,Amrita School of Engineering, Coimbatore,Department of Electronics and Communication Engineering,India
– sequence: 2
  givenname: Potti Sri Venkata Surya Pavan
  surname: Teja
  fullname: Teja, Potti Sri Venkata Surya Pavan
  email: cb.en.u4ece18046@cb.students.amrita.edu
  organization: Amrita Vishwa Vidyapeetham,Amrita School of Engineering, Coimbatore,Department of Electronics and Communication Engineering,India
– sequence: 3
  givenname: Grandhi Krishna
  surname: Teja
  fullname: Teja, Grandhi Krishna
  email: cb.en.u4ece18024@cb.students.amrita.edu
  organization: Amrita Vishwa Vidyapeetham,Amrita School of Engineering, Coimbatore,Department of Electronics and Communication Engineering,India
– sequence: 4
  givenname: Karanam
  surname: Divya
  fullname: Divya, Karanam
  email: cb.en.u4ece18030@cb.students.amrita.edu
  organization: Amrita Vishwa Vidyapeetham,Amrita School of Engineering, Coimbatore,Department of Electronics and Communication Engineering,India
– sequence: 5
  givenname: J
  surname: Aravinth
  fullname: Aravinth, J
  email: j_aravinth@cb.amrita.edu
  organization: Amrita Vishwa Vidyapeetham,Amrita School of Engineering, Coimbatore,Department of Electronics and Communication Engineering,India
BookMark eNotj8tOwzAURI0ECyj9Ahb4BxJy_UjsZRWlEKkVgpZ15dg31FKahMQW4u8popuZxRkdae7IdT_0SMgjZClApp_qsqx2UoDiKcsYS7XiUgt-RZa6UJDnUuici_yWvG1jF_w8og2T6Wh9Mp9Id3HEib7jPHQx-KGn3z4c6SqGIal6O7gz3J6zo6Z3dB3nv8ke7bH3XxHvyU1ruhmXl16Qj3W1L1-SzetzXa42iQdQIXGqkRYMUxxcK5htciyY1MYIiQptobVoG80NZjZzQlgLjjdOFA1w1CAsX5CHf69HxMM4-ZOZfg6Xo_wXVKhO7w
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCES54183.2022.9835943
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665496346
1665496347
EndPage 1490
ExternalDocumentID 9835943
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-d8b5c1a2831df42cb6e7259aa45e8ec7994fb93ae0c0d44cc1d3bd47b13e914c3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:02 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-d8b5c1a2831df42cb6e7259aa45e8ec7994fb93ae0c0d44cc1d3bd47b13e914c3
PageCount 6
ParticipantIDs ieee_primary_9835943
PublicationCentury 2000
PublicationDate 2022-June-22
PublicationDateYYYYMMDD 2022-06-22
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-June-22
  day: 22
PublicationDecade 2020
PublicationTitle 2022 7th International Conference on Communication and Electronics Systems (ICCES)
PublicationTitleAbbrev ICCES
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8125765
Snippet Obtaining High Resolution(HR) Multispectral Images which are not readily available is one of the more critical objectives in remote sensing applications as...
SourceID ieee
SourceType Publisher
StartPage 1485
SubjectTerms Analytical models
Convolutional Autoencoder
Discrete Wavelet Transform(DWT)
Discrete wavelet transforms
Measurement
Multispectral Images
Pansharpening
Principal Component Analysis(PCA)
Satellites
Stationary Wavelet Transform(SWT)
Training
Wavelet analysis
Title Multispectral Image Super Resolution with Auto-Encoder Model and Fusion Technique
URI https://ieeexplore.ieee.org/document/9835943
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LawIxEA4qPfTUFi19k0OPjW4ea8yxiFKhiEUL3iSPEQp2lcXt7-8kblsKvfS2hIWFb5Kd-SbzzRByjx5AuBwtkCmQTDnHmc3AM9AD8MIjI7Gpu_6znk4Hy6WZNcjDtxYGAFLxGXTjY7rLD1tfxVRZz2C4YJRskqbW_YNWqy7Z4pnpTYbD0TxXuEeR9gnRrd_-NTYleY3xyf--d0o6P_I7Ovt2LGekAUWbvCSpbBJGlnZDJ-_4I6DzagcljSn4wwaiMa1KH6v9lo2KqFYvaRx2tqG2CHRcxcwYXXx1be2Q1_FoMXxi9TwE9oY0YM_CwOWeWwwIeFgr4V0fNLIXa1UOiKw2Rq2dkRYynwWlvOdBuqC04xIMV16ek1axLeCCUAxzpMXjrJAtKBnFsGgqmXskF-Bl316SdoRjtTu0vFjVSFz9vXxNjiPisYJKiBvS2pcV3JIj_4GwlHfJTp_WEZXm
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa8IwED6cG2xP29Cx38vDHldtk9SaxyGKMicOHfgmSXrCQKsUu79_l9g5BnvZWwmFwndJ777LfXcAj-QBuInJAqFEEUhjokCHaANM2mi5JUaifXf9YTIatWczNa7A014Lg4i--Awb7tHf5adrW7hUWVNRuKCkOIBDNzkr3qm1yqKtKFTNQafTncSSdikRP84b5fu_Bqd4v9E7_d8Xz6D-I8Bj471rOYcKZjV482JZL43M9ZINVvQrYJNigzlzSfjdFmIuscqei-066GZOr54zN-5syXSWsl7hcmNs-t23tQ7vve600w_KiQjBBxGBbZC2TWwjTSFBlC4kt6aFCfEXrWWMhG2ilFwYJTSGNkyltDZKhUllYiKBKpJWXEA1W2d4CYwCHaHpQEviC1I4OSwZS8SW6AVa0dJXUHNwzDe7phfzEonrv5cf4Lg_fR3Oh4PRyw2cOPRdPRXnt1Dd5gXewZH9JIjye2-zL9h4mTE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+7th+International+Conference+on+Communication+and+Electronics+Systems+%28ICCES%29&rft.atitle=Multispectral+Image+Super+Resolution+with+Auto-Encoder+Model+and+Fusion+Technique&rft.au=Reddy%2C+Kasu+Ameesh&rft.au=Teja%2C+Potti+Sri+Venkata+Surya+Pavan&rft.au=Teja%2C+Grandhi+Krishna&rft.au=Divya%2C+Karanam&rft.date=2022-06-22&rft.pub=IEEE&rft.spage=1485&rft.epage=1490&rft_id=info:doi/10.1109%2FICCES54183.2022.9835943&rft.externalDocID=9835943