Contrastive Study of Distributed Multitask Fuzzy C-means Clustering and Traditional Clustering Algorithms

Clustering has been widely used in every field,but traditional classical clustering unable to handle multiple tasks at the same time under the scenario of data sets.Comparing with the classical clustering algorithm,the clustering results of Distributed Multitask Fuzzy C-means Clustering(MT-FCM) and...

Full description

Saved in:
Bibliographic Details
Published in:2020 5th International Conference on Communication, Image and Signal Processing (CCISP) pp. 239 - 245
Main Authors: Guo, Yanlin, Zi, Yuan, Jiang, Yizhang
Format: Conference Proceeding
Language:English
Published: IEEE 01.11.2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Clustering has been widely used in every field,but traditional classical clustering unable to handle multiple tasks at the same time under the scenario of data sets.Comparing with the classical clustering algorithm,the clustering results of Distributed Multitask Fuzzy C-means Clustering(MT-FCM) and traditional clustering algorithms can be verified from different multitask scenarios according to the features of MT-FCM algorithm.MT-FCM algorithm is suitable for multitask environment with a moderate number of tasks,in which case the clustering effect is better than that of other traditional clustering algorithms,but there are also non-applicable scenarios by the analysis of experimental results.This experiment not only summarizes and improves the characteristics of the MT-FCM algorithm,but also finds out the shortcomings of the algorithm,which provides a valuable reference for the follow-up research of Distributed Multitask Fuzzy C-means Clustering.
AbstractList Clustering has been widely used in every field,but traditional classical clustering unable to handle multiple tasks at the same time under the scenario of data sets.Comparing with the classical clustering algorithm,the clustering results of Distributed Multitask Fuzzy C-means Clustering(MT-FCM) and traditional clustering algorithms can be verified from different multitask scenarios according to the features of MT-FCM algorithm.MT-FCM algorithm is suitable for multitask environment with a moderate number of tasks,in which case the clustering effect is better than that of other traditional clustering algorithms,but there are also non-applicable scenarios by the analysis of experimental results.This experiment not only summarizes and improves the characteristics of the MT-FCM algorithm,but also finds out the shortcomings of the algorithm,which provides a valuable reference for the follow-up research of Distributed Multitask Fuzzy C-means Clustering.
Author Zi, Yuan
Jiang, Yizhang
Guo, Yanlin
Author_xml – sequence: 1
  givenname: Yanlin
  surname: Guo
  fullname: Guo, Yanlin
  email: 6191663001@stu.jiangnan.edu.cn
  organization: Jiangnan University,School of Artificial Intelligence and Computer Science,Wuxi,People's Republic of China
– sequence: 2
  givenname: Yuan
  surname: Zi
  fullname: Zi, Yuan
  email: 3478814759@qq.com
  organization: Jiangnan University,School of Artificial Intelligence and Computer Science,Wuxi,People's Republic of China
– sequence: 3
  givenname: Yizhang
  surname: Jiang
  fullname: Jiang, Yizhang
  email: yzjiang@jiangnan.edu.cn
  organization: Jiangnan University,School of Artificial Intelligence and Computer Science,Wuxi,People's Republic of China
BookMark eNpNj71OwzAYAI0EAy08AQN-gRTbqRN7rAyFSkUgtcyVfz4Xi8RBtoOUPj0DHZhuOOmkm6HLOERA6J6SBaVEPii12b1zSlizYISRhWRtzam4QDPaMkEFF5Jco6CGWJLOJfwA3pXRTXjw-DHkkoIZCzj8OnYlFJ2_8Ho8nSasqh50zFh1Yy6QQjxiHR3eJ-1CCUPU3X-16o5DCuWzzzfoyusuw-2Zc_Sxftqrl2r79rxRq20VKBWlsoJwpgUhBjRfGie9s5JzKbiU1PDaGuaNpcRb6peNb1vtwLUevGm45SDrObr76wYAOHyn0Os0Hc739S8noFhx
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CCISP51026.2020.9273518
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1728185890
9781728185897
EndPage 245
ExternalDocumentID 9273518
Genre orig-research
GrantInformation_xml – fundername: Youth Foundation
  funderid: 10.13039/100003536
– fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Jiangsu Province
  funderid: 10.13039/501100004608
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-c8052a800bea54bd9fdc955985991b53cb2fbc10fc1f46f77aded7fefb65c5e93
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:22 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-c8052a800bea54bd9fdc955985991b53cb2fbc10fc1f46f77aded7fefb65c5e93
PageCount 7
ParticipantIDs ieee_primary_9273518
PublicationCentury 2000
PublicationDate 2020-Nov.
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-Nov.
PublicationDecade 2020
PublicationTitle 2020 5th International Conference on Communication, Image and Signal Processing (CCISP)
PublicationTitleAbbrev CCISP
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7529286
Snippet Clustering has been widely used in every field,but traditional classical clustering unable to handle multiple tasks at the same time under the scenario of data...
SourceID ieee
SourceType Publisher
StartPage 239
SubjectTerms Clustering algorithms
comparison
Distributed databases
Distributed Multitask Fuzzy C-means Clustering
Indexes
Iterative algorithms
Linear programming
multitask learning
Phase change materials
Task analysis
traditional clustering algorithms
Title Contrastive Study of Distributed Multitask Fuzzy C-means Clustering and Traditional Clustering Algorithms
URI https://ieeexplore.ieee.org/document/9273518
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwGA3b8MEnlU28kwcfzdZL2jSPUh0KMgZe2Ntoki9a3FbpRdh-vUlbpoIvvoWmJJC0OV-S75yD0KUf0CShlBPfLMCE-pEgImBAQmGidU21YLWdz8sDm0yi2YxPO-hqy4UBgDr5DIa2WN_lq0xW9qhsxA3WBm7URV3Gwoar1aZsuQ4fxfH949R8Yp7NPPCcYfv2L9uUGjXGe__rbx8Nvul3eLoFlgPUgVUfpVZHKk8Kuzxhm_23xpnGN1b31lpWgcINlzYp3vG42mzWOCZLMECE40Vl1RBMUzhZKWzQSaXNCeDPquvFa5an5duyGKDn8e1TfEdanwSSmu1BSaS1JUhM5CcgCahQXCtpheWiwAR_IvCl8LSQrqOlq2moGUsUKKZBizCQAXD_EPVW2QqOEKaeA1pF3FMGtsC0yLmkIpLK_OsRaHaM-naY5h-NFMa8HaGTvx-fol07Ew117wz1yryCc7QjP8u0yC_q-fsC5KGhIg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwGA1zCvqksol38-Cj3XpJ1-ZRqmPDOQZO2dtoki9a3FrpRdh-vUlbpoIvvoWmJJC0OV-S75yD0LXjkjAkhBqOWoAN4vjMYK4HRo-paF0SybzSzudl5I3H_mxGJw10s-HCAECZfAYdXSzv8kXCC31U1qUKa13L30Lb2jmrZmvVSVuWSbtBMHyaqI_M1rkHttmp3_9lnFLiRn__fz0eoPY3AQ9PNtByiBoQt1CklaTSMNMLFNb5fyucSHynlW-1aRUIXLFpw-wd94v1eoUDYwkKinCwKLQegmoKh7HACp9EVJ0B_qy6XbwmaZS_LbM2eu7fT4OBUTslGJHaIOQG18YEoYr9GIQuYYJKwbW0nO-q8I-5Dme2ZNwyJbck6UnPCwUIT4JkPZe7QJ0j1IyTGI4RJrYJUvjUFgq4QLVIKSfM50L97T5I7wS19DDNPyoxjHk9Qqd_P75Cu4Pp42g-Go4fztCenpWKyHeOmnlawAXa4Z95lKWX5Vx-AXPFpGs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+5th+International+Conference+on+Communication%2C+Image+and+Signal+Processing+%28CCISP%29&rft.atitle=Contrastive+Study+of+Distributed+Multitask+Fuzzy+C-means+Clustering+and+Traditional+Clustering+Algorithms&rft.au=Guo%2C+Yanlin&rft.au=Zi%2C+Yuan&rft.au=Jiang%2C+Yizhang&rft.date=2020-11-01&rft.pub=IEEE&rft.spage=239&rft.epage=245&rft_id=info:doi/10.1109%2FCCISP51026.2020.9273518&rft.externalDocID=9273518