Sparse Random Linear Network Coding For Low Latency Allcast

Numerous applications require the sharing of data from each node on a network with every other node. In the case of Connected and Autonomous Vehicles (CAVs), it will be necessary for vehicles to update each other with their positions, manoeuvring intentions, and other telemetry data, despite shadowi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton) S. 560 - 564
Hauptverfasser: Graham, Mark A., Ganesh, Ayalvadi, Piechocki, Robert J.
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.09.2019
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Numerous applications require the sharing of data from each node on a network with every other node. In the case of Connected and Autonomous Vehicles (CAVs), it will be necessary for vehicles to update each other with their positions, manoeuvring intentions, and other telemetry data, despite shadowing caused by other vehicles. These applications require scalable, reliable, low latency communications, over challenging broadcast channels. In this article, we consider the allcast problem, of achieving multiple simultaneous network broadcasts, over a broadcast medium. We model slow fading using random graphs, and show that an allcast method based on sparse random linear network coding can achieve reliable allcast in a constant number of transmission rounds. We compare this with an uncoded baseline, which we show requires O(log(n)) transmission rounds. We justify and compare our analysis with extensive simulations.
DOI:10.1109/ALLERTON.2019.8919833