Acceleration of rank-constrained spatial covariance matrix estimation for blind speech extraction

In this paper, we propose new accelerated update rules for rank-constrained spatial covariance model estimation, which efficiently extracts a directional target source in diffuse background noise. The naive update rule requires heavy computation such as matrix inversion or matrix multiplication. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings ... Asia-Pacific Signal and Information Processing Association Annual Summit and Conference APSIPA ASC ... (Online) S. 332 - 338
Hauptverfasser: Kubo, Yuki, Takamune, Norihiro, Kitamura, Daichi, Saruwatari, Hiroshi
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.11.2019
Schlagworte:
ISSN:2640-0103
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose new accelerated update rules for rank-constrained spatial covariance model estimation, which efficiently extracts a directional target source in diffuse background noise. The naive update rule requires heavy computation such as matrix inversion or matrix multiplication. We resolve this problem by expanding matrix inversion to reduce computational complexity; in the parameter update step, we need neither matrix inversion nor multiplication. In an experiment, we show that the proposed accelerated update rule achieves 87 times faster calculation than the naive one.
ISSN:2640-0103
DOI:10.1109/APSIPAASC47483.2019.9023281