Robot Online Task and Trajectory Planning using Mixed-Integer Model Predictive Control

A monolithic integration of the robot online task allocation and trajectory planning within the framework of a hybrid model predictive controller is introduced. To this end, the underlying mixed-integer nonlinear programming (MINLP) problem is transformed into a relaxed mixed-integer quadratically c...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2022 European Control Conference (ECC) s. 2005 - 2011
Hlavní autori: Tika, Argtim, Gashi, Fatos, Bajcinca, Naim
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: EUCA 12.07.2022
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:A monolithic integration of the robot online task allocation and trajectory planning within the framework of a hybrid model predictive controller is introduced. To this end, the underlying mixed-integer nonlinear programming (MINLP) problem is transformed into a relaxed mixed-integer quadratically constrained programming (MIQCP) problem, suitable to generate feasible robot trajectories online. The proposed algorithm is implemented and validated on an experimental setup using the robot operating system (ROS) software and a robot arm performing discrete pick-and-place tasks.
DOI:10.23919/ECC55457.2022.9838243