Formal Model and Algorithm for Zero Knowledge Complex Network Traffic Analysis

The article discusses methods for determining the network traffic structure with zero prior knowledge. The developed method of detecting field boundaries in network traffic containing more than one protocol at the network level, without a priori information about such traffic structure, is described...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2022 Ural-Siberian Conference on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT) S. 298 - 301
Hauptverfasser: Sinadskiy, Alexey, Domukhovskii, Nikolai
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 19.09.2022
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The article discusses methods for determining the network traffic structure with zero prior knowledge. The developed method of detecting field boundaries in network traffic containing more than one protocol at the network level, without a priori information about such traffic structure, is described. The method consists of two parts: splitting network packets into groups, each of which has only one protocol at each network layer, and the search for field boundaries in each of these groups. It is proposed to divide traffic packets into clusters using a well-known method that calculates the distances between the data format in each packet. Method's refinement, which allows to reduce the resource intensity, is proposed in this work. The field boundary search method uses algorithms previously published by the authors, but differs in the use of additional statistical characteristics and the use of a machine learning model to search for characteristic figures of graphs of these characteristics. The article also describes the traffic on which the developed algorithms were tested.
AbstractList The article discusses methods for determining the network traffic structure with zero prior knowledge. The developed method of detecting field boundaries in network traffic containing more than one protocol at the network level, without a priori information about such traffic structure, is described. The method consists of two parts: splitting network packets into groups, each of which has only one protocol at each network layer, and the search for field boundaries in each of these groups. It is proposed to divide traffic packets into clusters using a well-known method that calculates the distances between the data format in each packet. Method's refinement, which allows to reduce the resource intensity, is proposed in this work. The field boundary search method uses algorithms previously published by the authors, but differs in the use of additional statistical characteristics and the use of a machine learning model to search for characteristic figures of graphs of these characteristics. The article also describes the traffic on which the developed algorithms were tested.
Author Sinadskiy, Alexey
Domukhovskii, Nikolai
Author_xml – sequence: 1
  givenname: Alexey
  surname: Sinadskiy
  fullname: Sinadskiy, Alexey
  email: asinadskiy@cyberlympha.com
  organization: CyberLympha,Yekaterinburg,Russia
– sequence: 2
  givenname: Nikolai
  surname: Domukhovskii
  fullname: Domukhovskii, Nikolai
  email: n.a.domukhovsky@urfu.ru
  organization: CyberLympha,Yekaterinburg,Russia
BookMark eNotz01LwzAcgPEIenDTT-AleG_Ny5qXYy2dDucE7UC8jKT5ZxbTZqSFuW_vwZ2e2w-eGboc4gAI3VOSU0r0w_bjsX6vV00hmFQ5I4zlWjPOC3mBZlSIYiGIZp_XaLOMqTcBv0YHAZvB4TLsY-qm7x77mPAXpIhfhngM4PaAq9gfAvziDUzHmH5wk4z3XYvLwYTT2I036MqbMMLtuXO0XdZN9Zyt355WVbnOOkrVlEmrraELLpyWhbKgJONKOu2cp9RL6a3R2nNomVCWMKNsa6iwBTfCCSAtn6O7f7cDgN0hdb1Jp915kf8BSVZN0Q
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/USBEREIT56278.2022.9923357
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISBN 166546092X
9781665460927
EndPage 301
ExternalDocumentID 9923357
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-7b9ba1436d9758be872387d9ddf11f77fba99f3ec268b02a8bca16b53a6d6e0c3
IEDL.DBID RIE
IngestDate Thu Jan 18 11:14:34 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-7b9ba1436d9758be872387d9ddf11f77fba99f3ec268b02a8bca16b53a6d6e0c3
PageCount 4
ParticipantIDs ieee_primary_9923357
PublicationCentury 2000
PublicationDate 2022-Sept.-19
PublicationDateYYYYMMDD 2022-09-19
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-Sept.-19
  day: 19
PublicationDecade 2020
PublicationTitle 2022 Ural-Siberian Conference on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT)
PublicationTitleAbbrev USBEREIT
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8220872
Snippet The article discusses methods for determining the network traffic structure with zero prior knowledge. The developed method of detecting field boundaries in...
SourceID ieee
SourceType Publisher
StartPage 298
SubjectTerms Clustering algorithms
Knowledge engineering
Machine learning
Machine learning algorithms
network traffic analysis
Protocols
reverse engineering
Search methods
statistics
Telecommunication traffic
Title Formal Model and Algorithm for Zero Knowledge Complex Network Traffic Analysis
URI https://ieeexplore.ieee.org/document/9923357
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7a4qEnH634JgePbrvvJEeVFkVYirZQvJRkkqiw7kppxZ9vsrutCF68hUASmDDMN8nM9wFcGoVC2SzH-jcmXixj6nEfQw8TLdEwP0KlKrEJmmVsPueTFlxte2G01lXxmR64YfWXr0pcu6eyIbdoJEpoG9qUpnWvVsMjGvh8OHu6GT2O7qc2olNXtBWGg2bBL-WUKnCMd_935B70fzrwyGQbW_ahpYsD6DpkWBMr9yAbO7SZEydmlhNRKHKdv5Q21X99JxaIkme9LMnD5sWMOL_P9RfJ6rJvYmOUI48gG1KSPszGo-ntndeII3hvNidYeVRyKSzYSRW3kF9q5tTDqOJKmSAwlBopODeRxjBl0g8FkyiCVCaRSFWqfYwOoVOUhT4CwpPQBBQRY-nHhrrWVWbQR7tzxJjGY-g5wyw-av6LRWOTk7-nT6HrbO9qKgJ-Bp3Vcq3PYQc_rYGWF9WlfQNgF5t_
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61CvbkoxXf5uDRbbPPJEeVlpbWpWgLxUvZTBIV1l0prfjzTXa3FcGLtxBIAhOG-SaZ-T6ErrWERJosx_g3hE4gAupwAp4DoRKgGfFBykJsgsYxm834uIZuNr0wSqmi-Ey17bD4y5c5rOxTWYcbNOKHdAtth0HgkbJbq2ISdQnvTJ_uuo_dwcTEdGrLtjyvXS35pZ1ShI7e3v8O3Uetnx48PN5ElwNUU9khalhsWFIrN1Hcs3gzxVbOLMVJJvFt-pKbZP_1HRsoip_VIsfD9ZsZtp6fqi8cl4Xf2EQpSx-B17QkLTTtdSf3faeSR3DeTFawdKjgIjFwJ5LcgH6hmNUPo5JLqV1XU6pFwrn2FXgRE8RLmIDEjUToJ5GMFAH_CNWzPFPHCPPQ0y4FgECQQFPbvMo0EDA7-4wpOEFNa5j5R8mAMa9scvr39BXa7U8eRvPRIB6eoYa9B1th4fJzVF8uVuoC7cCnMdbisrjAb6RgnsY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+Ural-Siberian+Conference+on+Biomedical+Engineering%2C+Radioelectronics+and+Information+Technology+%28USBEREIT%29&rft.atitle=Formal+Model+and+Algorithm+for+Zero+Knowledge+Complex+Network+Traffic+Analysis&rft.au=Sinadskiy%2C+Alexey&rft.au=Domukhovskii%2C+Nikolai&rft.date=2022-09-19&rft.pub=IEEE&rft.spage=298&rft.epage=301&rft_id=info:doi/10.1109%2FUSBEREIT56278.2022.9923357&rft.externalDocID=9923357