Fully Dynamic s-t Edge Connectivity in Subpolynomial Time (Extended Abstract)
We present a deterministic fully dynamic algorithm to answer c-edge connectivity queries on pairs of vertices in n°(1) worst case update and query time for any positive integer c = (log n)° (1) for a graph with n vertices. Previously, only polylogarithmic, O(√n), and O(n 2 / 3 ) worst case update ti...
Uložené v:
| Vydané v: | Proceedings / annual Symposium on Foundations of Computer Science s. 861 - 872 |
|---|---|
| Hlavní autori: | , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.02.2022
|
| Predmet: | |
| ISSN: | 2575-8454 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We present a deterministic fully dynamic algorithm to answer c-edge connectivity queries on pairs of vertices in n°(1) worst case update and query time for any positive integer c = (log n)° (1) for a graph with n vertices. Previously, only polylogarithmic, O(√n), and O(n 2 / 3 ) worst case update time fully dynamic algorithms were known for answering 1, 2 and 3-edge connectivity queries respectively [Henzinger-King 1995, Frederikson 1997, Galil and Italiano 1991]. Our result extends the c-edge connectivity vertex sparsifier [Chalermsook et al. 2021] to a multi-level sparsification framework. As our main technical contribution, we present a novel update algorithm for the multi-level c-edge connectivity vertex sparsifier with subpolynomial update time. See https://arxiv.org/abs/2004.07650 for the full version of this paper. |
|---|---|
| ISSN: | 2575-8454 |
| DOI: | 10.1109/FOCS52979.2021.00088 |