Recurrent Neural Network for Estimation of Aerodynamic Parameters

In this paper, Recurrent Neural Network (RNN) is proposed for the estimation of aerodynamic derivatives of an aircraft. The simulated flight data for short period mode of research aircraft, Hansa is used to train the RNN. The trained RNN is then used to predict the output for a given input file. The...

Full description

Saved in:
Bibliographic Details
Published in:International Conference on Signal Processing and Integrated Networks (Online) pp. 150 - 155
Main Authors: Mahajan, Hardik K., Kaur, Jaspreet, Singh, S., Banerjee, S.
Format: Conference Proceeding
Language:English
Published: IEEE 26.08.2021
Subjects:
ISSN:2688-769X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, Recurrent Neural Network (RNN) is proposed for the estimation of aerodynamic derivatives of an aircraft. The simulated flight data for short period mode of research aircraft, Hansa is used to train the RNN. The trained RNN is then used to predict the output for a given input file. The predicted data is then used for the estimation of aerodynamic derivatives using the Delta Method. The results obtained using RNN are compared to the results obtained using Feed Forward Back propagation algorithm (FFBP). It is found that the derivatives obtained using RNN are very close to true values of derivatives with lesser standard deviation as compared to derivatives obtained using FFBP algorithm. The RNN is also validated by adding the various percentages of noises in the simulated flight data. The results increase level of confidence and suggest that the RNN can be used advantageously to estimate aerodynamic derivatives of an aircraft from real flight data.
AbstractList In this paper, Recurrent Neural Network (RNN) is proposed for the estimation of aerodynamic derivatives of an aircraft. The simulated flight data for short period mode of research aircraft, Hansa is used to train the RNN. The trained RNN is then used to predict the output for a given input file. The predicted data is then used for the estimation of aerodynamic derivatives using the Delta Method. The results obtained using RNN are compared to the results obtained using Feed Forward Back propagation algorithm (FFBP). It is found that the derivatives obtained using RNN are very close to true values of derivatives with lesser standard deviation as compared to derivatives obtained using FFBP algorithm. The RNN is also validated by adding the various percentages of noises in the simulated flight data. The results increase level of confidence and suggest that the RNN can be used advantageously to estimate aerodynamic derivatives of an aircraft from real flight data.
Author Kaur, Jaspreet
Singh, S.
Mahajan, Hardik K.
Banerjee, S.
Author_xml – sequence: 1
  givenname: Hardik K.
  surname: Mahajan
  fullname: Mahajan, Hardik K.
  email: hardikkumarmahajan98@gmail.com
  organization: Amity University,Amity Institute of Aerospace Engineering,Uttar Pradesh,INDIA
– sequence: 2
  givenname: Jaspreet
  surname: Kaur
  fullname: Kaur, Jaspreet
  email: jaspreetkaur.26101998@gmail.com
  organization: Amity University,Amity Institute of Aerospace Engineering,Uttar Pradesh,INDIA
– sequence: 3
  givenname: S.
  surname: Singh
  fullname: Singh, S.
  email: ssingh10@amity.edu
  organization: Amity University,Amity Institute of Aerospace Engineering,Uttar Pradesh,INDIA
– sequence: 4
  givenname: S.
  surname: Banerjee
  fullname: Banerjee, S.
  email: sbanerjee4@amity.edu
  organization: Amity University,Amity Institute of Aerospace Engineering,Uttar Pradesh,INDIA
BookMark eNotz91KwzAYxvEoCs7ZKxAkN9D65js9LGPOwZjDD_BspM1bqK6NpBmyu7fgjv5nD8_vllwNYUBCHhgUjEH5-LZbbxVXQhccOCtKpTUYdUGy0limtZJCackvyYxra3Ojy88bko3jFwAIDsIoOSPVKzbHGHFIdIvH6A5T0m-I37QNkS7H1PUudWGgoaUVxuBPg-u7hu5cdD0mjOMduW7dYcTs3Dn5eFq-L57zzctqvag2eceYTbmssbSNU1B7Y7znXovJ4JislfUcLReiBbRgEScRWonMcdGYRnrgjnExJ_f_ux0i7n_idCye9me0-ANQLk25
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SPIN52536.2021.9566075
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781665435642
166543564X
EISSN 2688-769X
EndPage 155
ExternalDocumentID 9566075
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i118t-4be98ca50bd77dd2d63109a14b58d2e8233f0e808ee536e84e1a23c7c4d02a123
IEDL.DBID RIE
IngestDate Wed Aug 27 02:24:05 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-4be98ca50bd77dd2d63109a14b58d2e8233f0e808ee536e84e1a23c7c4d02a123
PageCount 6
ParticipantIDs ieee_primary_9566075
PublicationCentury 2000
PublicationDate 2021-Aug.-26
PublicationDateYYYYMMDD 2021-08-26
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-Aug.-26
  day: 26
PublicationDecade 2020
PublicationTitle International Conference on Signal Processing and Integrated Networks (Online)
PublicationTitleAbbrev SPIN
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003203754
Score 1.7753593
Snippet In this paper, Recurrent Neural Network (RNN) is proposed for the estimation of aerodynamic derivatives of an aircraft. The simulated flight data for short...
SourceID ieee
SourceType Publisher
StartPage 150
SubjectTerms Aerodynamics
Backpropagation
Delta Method
Estimation
Feed Forward Back Propagation Neural Network
Force
Parameter Estimation
Recurrent Neural Network
Recurrent neural networks
Signal processing
Signal processing algorithms
Title Recurrent Neural Network for Estimation of Aerodynamic Parameters
URI https://ieeexplore.ieee.org/document/9566075
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ja8JAFH6o9NBeumjpzhx6bDSzZSZHKUpPIl3Am8xkXkAoWqz29zsvCbaFXnrKEAiBN8y89fs-gPvSG6-M1gmqUCaKe5s4RV340mvuUfq8dJXYhJlM7GyWT1vwsMfCIGI1fIZ9Wla9_LAqtlQqG8RYPosurg1tY7Iaq7Wvp0hRqbk2IGCe5oOXmBdroSUNIgjebz7-paJSOZHx8f9-fwK9bzQem-79zCm0cHkGRz-IBLswfKayOREtMWLbcO_xUY13sxiTslE8xjVCka1KNsR4Z9Y69GzqaDaLCDZ78DYevT4-JY04QrKIOcEmUR5zS3oGPhgTgggZcXw6rry2QaAVUpYp2tQiRhOgVcidkIUpVEiFi_7qHDrL1RIvgMUYIIhCIg-OskV0MSxwmcx04LpUabiELhlj_lHzX8wbO1z9_foaDsneVHcV2Q10Nust3sJB8bVZfK7vqk3bASVQmJ0
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7MKagvXjbxbh58tFtza9PHIRsT5xg6YW8jaU5hIJvMzd9vkpap4ItPDYVCOSE51-_7AG4LkxqRShmhsEUkqFGRFr4LXxhJDXKTFTqITaTDoZpMslEN7jZYGEQMw2fY8svQy7eLfO1LZW0XyyfOxW3BthSCxSVaa1NR4SzouVYwYBpn7ReXGUsmuR9FYLRVff5LRyW4kd7B_37gEJrfeDwy2niaI6jh_Bj2f1AJNqDz7AvnnmqJeL4N_eYeYcCbuKiUdN1BLjGKZFGQDrpbs1SiJyPtp7M8xWYTXnvd8X0_quQRopnLClaRMJgpr2hgbJpay2ziWT41FUYqy1AxzosYVawQnQlQCaSa8TzNhY2Zdh7rBOrzxRxPgbgowLKcI7Xa54uoXWCgE55IS2UhYnsGDW-M6XvJgDGt7HD-9-sb2O2PnwbTwcPw8QL2vO19FZYll1BfLdd4BTv552r2sbwOG_gFRwGb5A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Signal+Processing+and+Integrated+Networks+%28Online%29&rft.atitle=Recurrent+Neural+Network+for+Estimation+of+Aerodynamic+Parameters&rft.au=Mahajan%2C+Hardik+K.&rft.au=Kaur%2C+Jaspreet&rft.au=Singh%2C+S.&rft.au=Banerjee%2C+S.&rft.date=2021-08-26&rft.pub=IEEE&rft.eissn=2688-769X&rft.spage=150&rft.epage=155&rft_id=info:doi/10.1109%2FSPIN52536.2021.9566075&rft.externalDocID=9566075