Recurrent Neural Network for Estimation of Aerodynamic Parameters
In this paper, Recurrent Neural Network (RNN) is proposed for the estimation of aerodynamic derivatives of an aircraft. The simulated flight data for short period mode of research aircraft, Hansa is used to train the RNN. The trained RNN is then used to predict the output for a given input file. The...
Uloženo v:
| Vydáno v: | International Conference on Signal Processing and Integrated Networks (Online) s. 150 - 155 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
26.08.2021
|
| Témata: | |
| ISSN: | 2688-769X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper, Recurrent Neural Network (RNN) is proposed for the estimation of aerodynamic derivatives of an aircraft. The simulated flight data for short period mode of research aircraft, Hansa is used to train the RNN. The trained RNN is then used to predict the output for a given input file. The predicted data is then used for the estimation of aerodynamic derivatives using the Delta Method. The results obtained using RNN are compared to the results obtained using Feed Forward Back propagation algorithm (FFBP). It is found that the derivatives obtained using RNN are very close to true values of derivatives with lesser standard deviation as compared to derivatives obtained using FFBP algorithm. The RNN is also validated by adding the various percentages of noises in the simulated flight data. The results increase level of confidence and suggest that the RNN can be used advantageously to estimate aerodynamic derivatives of an aircraft from real flight data. |
|---|---|
| AbstractList | In this paper, Recurrent Neural Network (RNN) is proposed for the estimation of aerodynamic derivatives of an aircraft. The simulated flight data for short period mode of research aircraft, Hansa is used to train the RNN. The trained RNN is then used to predict the output for a given input file. The predicted data is then used for the estimation of aerodynamic derivatives using the Delta Method. The results obtained using RNN are compared to the results obtained using Feed Forward Back propagation algorithm (FFBP). It is found that the derivatives obtained using RNN are very close to true values of derivatives with lesser standard deviation as compared to derivatives obtained using FFBP algorithm. The RNN is also validated by adding the various percentages of noises in the simulated flight data. The results increase level of confidence and suggest that the RNN can be used advantageously to estimate aerodynamic derivatives of an aircraft from real flight data. |
| Author | Kaur, Jaspreet Singh, S. Mahajan, Hardik K. Banerjee, S. |
| Author_xml | – sequence: 1 givenname: Hardik K. surname: Mahajan fullname: Mahajan, Hardik K. email: hardikkumarmahajan98@gmail.com organization: Amity University,Amity Institute of Aerospace Engineering,Uttar Pradesh,INDIA – sequence: 2 givenname: Jaspreet surname: Kaur fullname: Kaur, Jaspreet email: jaspreetkaur.26101998@gmail.com organization: Amity University,Amity Institute of Aerospace Engineering,Uttar Pradesh,INDIA – sequence: 3 givenname: S. surname: Singh fullname: Singh, S. email: ssingh10@amity.edu organization: Amity University,Amity Institute of Aerospace Engineering,Uttar Pradesh,INDIA – sequence: 4 givenname: S. surname: Banerjee fullname: Banerjee, S. email: sbanerjee4@amity.edu organization: Amity University,Amity Institute of Aerospace Engineering,Uttar Pradesh,INDIA |
| BookMark | eNotz91KwzAYxvEoCs7ZKxAkN9D65js9LGPOwZjDD_BspM1bqK6NpBmyu7fgjv5nD8_vllwNYUBCHhgUjEH5-LZbbxVXQhccOCtKpTUYdUGy0limtZJCackvyYxra3Ojy88bko3jFwAIDsIoOSPVKzbHGHFIdIvH6A5T0m-I37QNkS7H1PUudWGgoaUVxuBPg-u7hu5cdD0mjOMduW7dYcTs3Dn5eFq-L57zzctqvag2eceYTbmssbSNU1B7Y7znXovJ4JislfUcLReiBbRgEScRWonMcdGYRnrgjnExJ_f_ux0i7n_idCye9me0-ANQLk25 |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/SPIN52536.2021.9566075 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9781665435642 166543564X |
| EISSN | 2688-769X |
| EndPage | 155 |
| ExternalDocumentID | 9566075 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
| ID | FETCH-LOGICAL-i118t-4be98ca50bd77dd2d63109a14b58d2e8233f0e808ee536e84e1a23c7c4d02a123 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:24:05 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i118t-4be98ca50bd77dd2d63109a14b58d2e8233f0e808ee536e84e1a23c7c4d02a123 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_9566075 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-Aug.-26 |
| PublicationDateYYYYMMDD | 2021-08-26 |
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-Aug.-26 day: 26 |
| PublicationDecade | 2020 |
| PublicationTitle | International Conference on Signal Processing and Integrated Networks (Online) |
| PublicationTitleAbbrev | SPIN |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003203754 |
| Score | 1.7753593 |
| Snippet | In this paper, Recurrent Neural Network (RNN) is proposed for the estimation of aerodynamic derivatives of an aircraft. The simulated flight data for short... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 150 |
| SubjectTerms | Aerodynamics Backpropagation Delta Method Estimation Feed Forward Back Propagation Neural Network Force Parameter Estimation Recurrent Neural Network Recurrent neural networks Signal processing Signal processing algorithms |
| Title | Recurrent Neural Network for Estimation of Aerodynamic Parameters |
| URI | https://ieeexplore.ieee.org/document/9566075 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB7a4kEvPlrxzR48mjbZ3WQ3xyItHqQUH9Bb2c1OoSCt1NTf70wSqoIXTwkhIWSG3Xlkvu8DuDUuVU4rFynpqEBZeB85jylzEeZWe2dsza7_aCYTO5vl0xbc7bAwiFgNn2GfT6t_-WFdbLlVNqBcPqMQ14a2MVmN1dr1U5Ss1FwbEHAS54NnqotTmSoeRJBJv3n4l4pKFUTGh_97_RH0vtF4YrqLM8fQwtUJHPwgEuzC8Inb5ky0JJhtw73RoRrvFpSTihEt4xqhKNYLMUTaM2sdejF1PJvFBJs9eB2PXu4fokYcIVpSTVBG2mNuWc_AB2NCkCFjjk-XaJ_aINFKpRYx2tgikgnQakycVIUpdIjJLVKdQme1XuEZCEte0QXdntigtUw8aq8NfW1aeEoAi3PosjHm7zX_xbyxw8Xfly9hn-3NfVeZXUGn3GzxGvaKz3L5sbmpnPYFzJ6Xug |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qFdSLj1Z8uwePpk320d0ci7RUrKVohd7KbnYKBWmltv5-Z5NQFbx4SggJJDPsziPzfR_ArbZKWClsJLilAmXqXGQdqsBFmBrprDYFu35fDwZmPE6HFbjbYGEQMR8-w0Y4zf_l-0W2Dq2yJuXyLQpxW7CtpORxgdbadFQEz_VcSxhwEqfNF6qMFVcijCLwpFE-_ktHJQ8j3YP_vcAh1L_xeGy4iTRHUMH5Mez_oBKsQfs5NM4D1RILfBv2jQ75gDejrJR1aCEXGEW2mLI20q5ZKNGzoQ3TWYFisw6v3c7ovheV8gjRjKqCVSQdpiYoGjivtffctwLLp02kU8ZzNFyIaYwmNohkAjQSE8tFpjPpY3IMFydQnS_meArMkF9kRrcnxpNlE4fSSU1fqzJHKWB2BrVgjMl7wYAxKe1w_vflG9jtjZ76k_7D4PEC9oLtQxeWty6hulqu8Qp2ss_V7GN5nTvwC-J1mwE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Signal+Processing+and+Integrated+Networks+%28Online%29&rft.atitle=Recurrent+Neural+Network+for+Estimation+of+Aerodynamic+Parameters&rft.au=Mahajan%2C+Hardik+K.&rft.au=Kaur%2C+Jaspreet&rft.au=Singh%2C+S.&rft.au=Banerjee%2C+S.&rft.date=2021-08-26&rft.pub=IEEE&rft.eissn=2688-769X&rft.spage=150&rft.epage=155&rft_id=info:doi/10.1109%2FSPIN52536.2021.9566075&rft.externalDocID=9566075 |