Using a high-level parallel programming language for GPU-accelerated tomographic reconstruction

This paper aims to determine the usefulness of using a high-level parallel programming language for implementing parallel high-performance tomographic reconstruction algorithms. The purpose of this is to make it easier for researchers to implement advanced model-based iterative reconstruction algori...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2019 International Conference on High Performance Computing & Simulation (HPCS) S. 27 - 32
Hauptverfasser: Lindhoj, Mette Bjerg, Henriksen, Troels, Pedersen, Larke, Sporring, Jon
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.07.2019
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper aims to determine the usefulness of using a high-level parallel programming language for implementing parallel high-performance tomographic reconstruction algorithms. The purpose of this is to make it easier for researchers to implement advanced model-based iterative reconstruction algorithms for use at synchrotron facilities, while still taking advantage of hardware such as GPUs. To this end, we implement the forward- and back-projection in the programming language Futhark, and verify their applicability through an implementation of an algebraic reconstruction algorithm. We obtain promising performance results by use of algorithmic considerations instead of low-level optimizations. Finally, we demonstrate that the implementation makes it possible to prototype implementations of iterative reconstruction algorithms on a standard laptop while still obtaining good scaling towards highend GPUs.
DOI:10.1109/HPCS48598.2019.9188217