Multi-loss Function in Robust Convolutional Autoencoder for Reconstruction Low-quality Fingerprint Image
Our research is fingerprint reconstruction based on a convolutional autoencoder. We combine the perceptual measurement as a multi-loss function to give satisfactory weight correction, such as the structural similarity index measure (SSIM), Mean Absolute Error (MAE), and peak signal-to-noise ratio (P...
Uloženo v:
| Vydáno v: | Proceedings ... Asia-Pacific Signal and Information Processing Association Annual Summit and Conference APSIPA ASC ... (Online) s. 428 - 431 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
Asia-Pacific of Signal and Information Processing Association (APSIPA)
07.11.2022
|
| Témata: | |
| ISSN: | 2640-0103 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Our research is fingerprint reconstruction based on a convolutional autoencoder. We combine the perceptual measurement as a multi-loss function to give satisfactory weight correction, such as the structural similarity index measure (SSIM), Mean Absolute Error (MAE), and peak signal-to-noise ratio (PSNR). We observed and investigated the result using multi-loss functions and other loss functions. Eventually, our experiment obtained the highest image quality metric scores from the experimental result summarized as a loss function (SSIM + PSNR) with optimizer Root Mean Squared Propagation (RMSprop). We evaluated the image reconstruction using a dataset from FVC2004. Eventually, our proposed method gets impressive results, increasing the image's average quality by PSNR of 20.58%, SSIM of 4.07%, and MSE of 38.92%, respectively. |
|---|---|
| ISSN: | 2640-0103 |
| DOI: | 10.23919/APSIPAASC55919.2022.9980345 |