Multi-loss Function in Robust Convolutional Autoencoder for Reconstruction Low-quality Fingerprint Image

Our research is fingerprint reconstruction based on a convolutional autoencoder. We combine the perceptual measurement as a multi-loss function to give satisfactory weight correction, such as the structural similarity index measure (SSIM), Mean Absolute Error (MAE), and peak signal-to-noise ratio (P...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings ... Asia-Pacific Signal and Information Processing Association Annual Summit and Conference APSIPA ASC ... (Online) s. 428 - 431
Hlavní autoři: Raswa, Farchan Hakim, Halberd, Franki, Harjoko, Agus, Wahyono, Lee, Chung-Ting, Li, Yung-Hui, Wang, Jia Ching
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: Asia-Pacific of Signal and Information Processing Association (APSIPA) 07.11.2022
Témata:
ISSN:2640-0103
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Our research is fingerprint reconstruction based on a convolutional autoencoder. We combine the perceptual measurement as a multi-loss function to give satisfactory weight correction, such as the structural similarity index measure (SSIM), Mean Absolute Error (MAE), and peak signal-to-noise ratio (PSNR). We observed and investigated the result using multi-loss functions and other loss functions. Eventually, our experiment obtained the highest image quality metric scores from the experimental result summarized as a loss function (SSIM + PSNR) with optimizer Root Mean Squared Propagation (RMSprop). We evaluated the image reconstruction using a dataset from FVC2004. Eventually, our proposed method gets impressive results, increasing the image's average quality by PSNR of 20.58%, SSIM of 4.07%, and MSE of 38.92%, respectively.
ISSN:2640-0103
DOI:10.23919/APSIPAASC55919.2022.9980345