Adaptive Multi-scale Quantum Harmonic Oscillator Algorithm Based on Evolutionary Strategy
This paper proposes a novel adaptive multi-scale quantum harmonic oscillator algorithm based on evolutionary strategies (AMQHOA-ES) for global numerical optimization. Since the original Multi-scale Quantum Harmonic Oscillator Algorithm (MQHOA) utilizes a fixed contraction factor to narrow the search...
Uloženo v:
| Vydáno v: | 2020 IEEE Congress on Evolutionary Computation (CEC) s. 1 - 8 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.07.2020
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper proposes a novel adaptive multi-scale quantum harmonic oscillator algorithm based on evolutionary strategies (AMQHOA-ES) for global numerical optimization. Since the original Multi-scale Quantum Harmonic Oscillator Algorithm (MQHOA) utilizes a fixed contraction factor to narrow the search scale, the searching step decreases too fast at the later stage of the evolution and is more likely to suffer premature convergence and stagnation. To improve the convergence performance, an adaptive attenuation mechanism of scaling is proposed to dynamically adjust the exploration and exploitation properties. Evolutionary strategies such as selection, crossover and DE/rand/1 mutation are implemented in the proposed algorithm to enhance the exploration and exploitation abilities. Experimental results evaluated on several unimodal and multimodal benchmark functions indicate the significant improvement of the proposed algorithm to the original MQHOA. Meanwhile, the experimental results compared with several state-of-the-art optimizers show the superiority or competitiveness of the proposed algorithm. |
|---|---|
| AbstractList | This paper proposes a novel adaptive multi-scale quantum harmonic oscillator algorithm based on evolutionary strategies (AMQHOA-ES) for global numerical optimization. Since the original Multi-scale Quantum Harmonic Oscillator Algorithm (MQHOA) utilizes a fixed contraction factor to narrow the search scale, the searching step decreases too fast at the later stage of the evolution and is more likely to suffer premature convergence and stagnation. To improve the convergence performance, an adaptive attenuation mechanism of scaling is proposed to dynamically adjust the exploration and exploitation properties. Evolutionary strategies such as selection, crossover and DE/rand/1 mutation are implemented in the proposed algorithm to enhance the exploration and exploitation abilities. Experimental results evaluated on several unimodal and multimodal benchmark functions indicate the significant improvement of the proposed algorithm to the original MQHOA. Meanwhile, the experimental results compared with several state-of-the-art optimizers show the superiority or competitiveness of the proposed algorithm. |
| Author | Wang, Peng Ye, Xinggui |
| Author_xml | – sequence: 1 givenname: Xinggui surname: Ye fullname: Ye, Xinggui organization: University of Chinese Academy of Sciences,Beijing,China – sequence: 2 givenname: Peng surname: Wang fullname: Wang, Peng organization: Southwest Minzu University,School of Computer Science and Technology,Chengdu,China |
| BookMark | eNotj0FLwzAYQCPowU1_gQj5A635kjRNjrVMJ0yGqAdPI02_zkDajDYd7N87cKd3e7y3INdDHJCQR2A5ADNP9aqWWjGVc8ZZbkAXpdBXZAEl16AMN3BLfqrWHpI_In2fQ_LZ5GxA-jHbIc09Xduxj4N3dDs5H4JNcaRV2MfRp9-ePtsJWxoHujrGMCcfBzue6GcabcL96Y7cdDZMeH_hkny_rL7qdbbZvr7V1SbzADplYFyDynXIrCybVkjnnMFWykY4LjutBZ5DATkHiwwKrrBQVqFoHEhuGrEkD_9ej4i7w-j7c8Xuciv-ABMUUMw |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/CEC48606.2020.9185738 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore Digital Library IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics |
| EISBN | 1728169291 9781728169293 |
| EndPage | 8 |
| ExternalDocumentID | 9185738 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i118t-19cbe6cfe0a47bd34ccc9ed44b3c24f883e2911e221ae01526e56a6e3bc1429b3 |
| IEDL.DBID | RIE |
| IngestDate | Mon Jul 08 05:38:35 EDT 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i118t-19cbe6cfe0a47bd34ccc9ed44b3c24f883e2911e221ae01526e56a6e3bc1429b3 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_9185738 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-July |
| PublicationDateYYYYMMDD | 2020-07-01 |
| PublicationDate_xml | – month: 07 year: 2020 text: 2020-July |
| PublicationDecade | 2020 |
| PublicationTitle | 2020 IEEE Congress on Evolutionary Computation (CEC) |
| PublicationTitleAbbrev | CEC |
| PublicationYear | 2020 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.7675703 |
| Snippet | This paper proposes a novel adaptive multi-scale quantum harmonic oscillator algorithm based on evolutionary strategies (AMQHOA-ES) for global numerical... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | adaptive mechanism Benchmark testing Convergence differential evolution Evolutionary strategy Harmonic analysis multi-scale quantum harmonic oscillator algorithm Oscillators population-based optimization Sociology Statistics |
| Title | Adaptive Multi-scale Quantum Harmonic Oscillator Algorithm Based on Evolutionary Strategy |
| URI | https://ieeexplore.ieee.org/document/9185738 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La8JAEB6s9OCpDy19s4ceGzW7aZI9WlE8FGuhLfYk-xhboSaSGsF_39kkWAq99BbCQGAmzDezO983ADc29ueB9aUnREQNCqVDTwWh8oTVsbVSS1tMVb4-RONxPJ3KSQ1ud1wYRCyGz7DtHou7fJua3B2VdaQTLhLxHuxFUVhytSpSjt-Vnf6g7zYqubkD3m1Xtr-WphSYMTz439cOofVDvmOTHawcQQ2TY2i4orDUVG7CW8-qlUtTrKDPel_kZ2RPOTkpX7KRypZO75Y9ErpRkKmpZr3P9zRbrD-W7J5Qy7I0YYNN9dOpbMsqjdptC16Gg-f-yKtWJHgL6gzWni-NxtDMsauCSFsRGGMk2iDQwvBgHscCOaUz5NxXSMjPQ7wLVYhCG5-QSIsTqCdpgqfAOBUnc0sGTrLGtzKmQo-TrUAtDXUhZ9B0PpqtShWMWeWe879fX0DDhaEcbL2E-jrL8Qr2zYZ8lV0XofsGmNmc9Q |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF1qFezJj1b8dg8eTdvsbtPssZZKxVorVKmnstmdaMEmJTaF_ntnk1ARvHgLYSAwE-bN7M57Q8i18d1QGFc6nLexQcF06CjhKYebwDdGBtJkU5Wvg_Zw6E8mclQiNxsuDABkw2dQt4_ZXb6JdWqPyhrSChdxf4tst4RgzZytVdBy3KZsdHtdu1PJTh6wZr2w_rU2JUONu73_fW-f1H7od3S0AZYDUoLokFRsWZirKlfJW8eohU1UNCPQOl_oaaDPKbopndO-SuZW8ZY-Ib5hmLGtpp3P9ziZLT_m9BZxy9A4or1V8dupZE0Lldp1jbzc9cbdvlMsSXBm2BssHVfqADwdQlOJdmC40FpLMEIEXDMR-j4HhgkNGHMVIPYzD1qe8oAH2kUsCvgRKUdxBMeEMixPQoMGVrTGNdLHUo-hLYdAauxDTkjV-mi6yHUwpoV7Tv9-fUV2--PHwXRwP3w4IxUbknzM9ZyUl0kKF2RHr9BvyWUWxm_v6KA8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+IEEE+Congress+on+Evolutionary+Computation+%28CEC%29&rft.atitle=Adaptive+Multi-scale+Quantum+Harmonic+Oscillator+Algorithm+Based+on+Evolutionary+Strategy&rft.au=Ye%2C+Xinggui&rft.au=Wang%2C+Peng&rft.date=2020-07-01&rft.pub=IEEE&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FCEC48606.2020.9185738&rft.externalDocID=9185738 |