Value Function of an Infinite Dimensional Infinite Horizon Problem
We investigate the value function of an infinite horizon problem in the setting of an infinite-dimensional differential inclusion. In particular, we provide an upper estimate of its Gateaux subdifferential in terms of the Clarke subdifferential of the integrand and the Clarke normal cone to the grap...
Uloženo v:
| Vydáno v: | 2020 European Control Conference (ECC) s. 831 - 836 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina japonština |
| Vydáno: |
EUCA
01.05.2020
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We investigate the value function of an infinite horizon problem in the setting of an infinite-dimensional differential inclusion. In particular, we provide an upper estimate of its Gateaux subdifferential in terms of the Clarke subdifferential of the integrand and the Clarke normal cone to the graph of the set-valued dynamics. We also derive a necessary optimality condition in the form of an Euler-Lagrange inclusion, the maximum principle and a sensitivity relation. |
|---|---|
| DOI: | 10.23919/ECC51009.2020.9143858 |