Value Function of an Infinite Dimensional Infinite Horizon Problem
We investigate the value function of an infinite horizon problem in the setting of an infinite-dimensional differential inclusion. In particular, we provide an upper estimate of its Gateaux subdifferential in terms of the Clarke subdifferential of the integrand and the Clarke normal cone to the grap...
Uložené v:
| Vydané v: | 2020 European Control Conference (ECC) s. 831 - 836 |
|---|---|
| Hlavní autori: | , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English Japanese |
| Vydavateľské údaje: |
EUCA
01.05.2020
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We investigate the value function of an infinite horizon problem in the setting of an infinite-dimensional differential inclusion. In particular, we provide an upper estimate of its Gateaux subdifferential in terms of the Clarke subdifferential of the integrand and the Clarke normal cone to the graph of the set-valued dynamics. We also derive a necessary optimality condition in the form of an Euler-Lagrange inclusion, the maximum principle and a sensitivity relation. |
|---|---|
| DOI: | 10.23919/ECC51009.2020.9143858 |