Speech Recognitionwith Speech Density Estimation by the Dirichlet Process Mixture

This paper shows a method for the modeling of speech signal distributions based on Dirichlet process mixtures (DPM) and the estimation of noise sequences based on particle filtering. In real situations, the speech recognition rate degrades miser ably because of the effect of environmental noises, re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2008 IEEE International Conference on Acoustics, Speech and Signal Processing S. 1553 - 1556
Hauptverfasser: Ota, K., Duflos, E., Vanheeghe, P., Yanagida, M.
Format: Tagungsbericht
Sprache:Englisch
Japanisch
Veröffentlicht: IEEE 01.03.2008
Schlagworte:
ISBN:9781424414833, 1424414830
ISSN:1520-6149
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper shows a method for the modeling of speech signal distributions based on Dirichlet process mixtures (DPM) and the estimation of noise sequences based on particle filtering. In real situations, the speech recognition rate degrades miser ably because of the effect of environmental noises, reflected waves and so on. To improve the speech recognition rate, a technique for the estimation of noise sequences is necessary. In this paper, the distribution of the clean speech is modeled using the DPM instead of the traditional model, which is a Gaussian mixture model (GMM). Speech signal sequences are generated according to the mean and covariance generated from the DPM. Then, noise signal sequences are estimated with a particle filter. The proposed method using extended Kalman filter (EKF) can improve the speech recognition rate significantly in the low SNR region. Applying unscented Kalman filter (UKF), better results can be obtained in also the high SNR.
ISBN:9781424414833
1424414830
ISSN:1520-6149
DOI:10.1109/ICASSP.2008.4517919