Pair-Then-Aggregate: Simplified and Efficient Parallel Programming Paradigm for Secure Multi-Party Computation
Pair-then-Aggregate (PtA) introduces a programming paradigm and an automated parallel execution engine for large-scale secure multi-party (MPC) computations, drawing inspiration from the widely-used yet not explicitly defined Table-Generation-and-Look-up (TGL) pattern in privacy-preserving algorithm...
Uloženo v:
| Vydáno v: | Proceedings - IEEE International Parallel and Distributed Processing Symposium s. 629 - 640 |
|---|---|
| Hlavní autoři: | , , , , , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
03.06.2025
|
| Témata: | |
| ISSN: | 1530-2075 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Pair-then-Aggregate (PtA) introduces a programming paradigm and an automated parallel execution engine for large-scale secure multi-party (MPC) computations, drawing inspiration from the widely-used yet not explicitly defined Table-Generation-and-Look-up (TGL) pattern in privacy-preserving algorithm design. PtA offers an easy-to-use API and a versatile execution engine that harnesses various levels of parallelism and adapts to different MPC deployments, algorithms, and input sizes. Evaluations on a real-world MPC platform demonstrate significant enhancements in scalability, adaptability, and ease of programming. PtA can process one billion input elements with 3-23 lines of C++ code in 5-74 seconds. It outperforms state-of-the-art implementations in 91.4 % of 35 test cases, achieving up to a 12.4 \times speedup with much less coding effort. 1 1 Our code is provided in https://github.com/Fannxy/Pair-then-Aggregate |
|---|---|
| ISSN: | 1530-2075 |
| DOI: | 10.1109/IPDPS64566.2025.00062 |