Distributed Robust Continuous-Time Optimization Algorithms for Time-Varying Constrained Cost Functions

This paper presents a distributed continuous-time optimization framework aimed at overcoming the challenges posed by time-varying cost functions and constraints in multi-agent systems, particularly those subject to disturbances. By incorporating tools such as log-barrier penalty functions to address...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Conference on Control, Mechatronics and Automation (Online) S. 7 - 13
Hauptverfasser: Ebrahimi, Zeinab, Deghat, Mohammad
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 11.11.2024
Schlagworte:
ISSN:2837-5149
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a distributed continuous-time optimization framework aimed at overcoming the challenges posed by time-varying cost functions and constraints in multi-agent systems, particularly those subject to disturbances. By incorporating tools such as log-barrier penalty functions to address inequality constraints, an integral sliding mode control for disturbance mitigation is proposed. The algorithm ensures asymptotic tracking of the optimal solution, achieving a tracking error of zero. The convergence of the introduced algorithms is demonstrated through Lyapunov analysis and nonsmooth techniques. Furthermore, the framework's effectiveness is validated through numerical simulations considering two scenarios for the communication networks.
ISSN:2837-5149
DOI:10.1109/ICCMA63715.2024.10843887